-
1
-
-
84937390221
-
An empirical investigation of the K2 metric
-
ed. S. Benferhat and P. Besnard, London, UK: Springer-Verlag
-
Borgelt, C., and R. Kruse. 2001. An empirical investigation of the K2 metric. In ECSQARU' 01: Proc. of the 6th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ed. S. Benferhat and P. Besnard, 240-251. London, UK: Springer-Verlag.
-
(2001)
ECSQARU' 01: Proc. of the 6th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
, pp. 240-251
-
-
Borgelt, C.1
Kruse, R.2
-
2
-
-
0003042996
-
An algorithm for Bayesian belief network construction from data
-
Ft. Lauderdale, FL
-
Cheng, J., D. A. Bell, and W. Liu. 1997. An algorithm for Bayesian belief network construction from data. In Proc. of AI & STAT' 97, 83-90. Ft. Lauderdale, FL.
-
(1997)
Proc. of AI & STAT'
, vol.97
, pp. 83-90
-
-
Cheng, J.1
Bell, D.A.2
Liu, W.3
-
4
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., and E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9:309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
5
-
-
17644374175
-
Support vector machine-based image classification for genetic syndrome diagnosis
-
David, A., and B. Lerner. 2005. Support vector machine-based image classification for genetic syndrome diagnosis. Pattern Recognition Letters 26:1029-1038.
-
(2005)
Pattern Recognition Letters
, vol.26
, pp. 1029-1038
-
-
David, A.1
Lerner, B.2
-
8
-
-
84898950733
-
Discovering hidden variables: A structure-based approach
-
Elidan, G., N. Lotner, N. Friedman, and D. Koller. 2001. Discovering hidden variables: A structure-based approach. Advances in Neural Information Processing Systems 13:479-485.
-
(2001)
Advances in Neural. Information Processing Systems
, vol.13
, pp. 479-485
-
-
Elidan, G.1
Lotner, N.2
Friedman, N.3
Koller, D.4
-
9
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
San Francisco: Morgan Kaufmann
-
Friedman, N. 1997. Learning belief networks in the presence of missing values and hidden variables. In Proc. of the 14th Int. Conf. on Machine Learning, 125-133. San Francisco: Morgan Kaufmann.
-
(1997)
Proc. of the 14th Int. Conf. on Machine Learning
, pp. 125-133
-
-
Friedman, N.1
-
11
-
-
0012999549
-
Learning from incomplete data
-
MIT Center for Biological and Computational Learning, Massachusetts
-
Ghahramani, Z., and M. I. Jordan. 1994. Learning from incomplete data. In Technical report 108, MIT Center for Biological and Computational Learning, Massachusetts.
-
(1994)
Technical Report 108
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
12
-
-
21244444642
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
Greiner, R., X. Su, B. Shen, and W. Zhou. 2005. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning 59:297-322.
-
(2005)
Machine Learning
, vol.59
, pp. 297-322
-
-
Greiner, R.1
Su, X.2
Shen, B.3
Zhou, W.4
-
13
-
-
14344256569
-
Learning Bayesian network classifiers by maximazing conditional likelihood
-
Banff, Canada: ACM Press
-
Grossman, D., and P. Domingos. 2004. Learning Bayesian network classifiers by maximazing conditional likelihood. In Proc. of the 21th Int. Conf. on Machine Learning, 361-368. Banff, Canada: ACM Press.
-
(2004)
Proc. of the 21th Int. Conf. on Machine Learning
, pp. 361-368
-
-
Grossman, D.1
Domingos, P.2
-
15
-
-
0003846041
-
A tutorial on learning with Bayesian networks
-
Microsoft Research
-
Heckerman, D. 1995. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research.
-
(1995)
Technical Report MSR-TR-95-06
-
-
Heckerman, D.1
-
16
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., D. Geiger, and D. M. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20:197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
20
-
-
26444479778
-
Optimization by simulated annealing
-
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220(4598):671-680.
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
21
-
-
0013155979
-
On supervised selection of Bayesian networks
-
ed. K. Laskey and H. Prade, San Francisco: Morgan Kaufmann
-
Kontkanen, P., P. Myllymäki, T. Sliander, and H. Tirri. 1999. On supervised selection of Bayesian networks. In Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence, ed. K. Laskey and H. Prade, 334-342. San Francisco: Morgan Kaufmann.
-
(1999)
Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence
, pp. 334-342
-
-
Kontkanen, P.1
Myllymäki, P.2
Sliander, T.3
Tirri, H.4
-
22
-
-
0001901666
-
Induction of selective Bayesian classifiers
-
ed. R. Lopez de Mantaras and D. Poole, Seatle, WA: Morgan Kaufmann
-
Langley, P., and S. Sage. 1994. Induction of selective Bayesian classifiers. In Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence, ed. R. Lopez de Mantaras and D. Poole, 399-406. Seatle, WA: Morgan Kaufmann.
-
(1994)
Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
-
23
-
-
0001006209
-
Local computation with probabilities on graphical structures and their application to expert systems
-
Lauritzen, S. L., and D. J. Spiegelhalter. 1988. Local computation with probabilities on graphical structures and their application to expert systems. Journal of Royal Statistics B 50:157-224.
-
(1988)
Journal of Royal Statistics B
, vol.50
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
24
-
-
1842714926
-
Bayesian fluorescence in-situ hybridization signal classification
-
Lerner, B. 2004. Bayesian fluorescence in-situ hybridization signal classification. Artificial Intelligence in Medicine 30:301-316.
-
(2004)
Artificial Intelligence in Medicine
, vol.30
, pp. 301-316
-
-
Lerner, B.1
-
25
-
-
0035521286
-
Feature representation and signal classification in fluorescence in-situ hybridization image analysis
-
Lerner, B., W. F. Clocksin, S. Dhanjal, M. A. Hultén, and C. M. Bishop. 2001. Feature representation and signal classification in fluorescence in-situ hybridization image analysis. IEEE Trans. on SMC A 31:655-665.
-
(2001)
IEEE Trans. on SMC A
, vol.31
, pp. 655-665
-
-
Lerner, B.1
Clocksin, W.F.2
Dhanjal, S.3
Hultén, M.A.4
Bishop, C.M.5
-
26
-
-
34547131059
-
Segmentation and classification of dot and non-dot-like fluorescence in-situ hybridization signals for automated detection of cytogenetic numerical abnormalities
-
Lerner, B., L. Koushnir, and J. Yeshaya. 2007. Segmentation and classification of dot and non-dot-like fluorescence in-situ hybridization signals for automated detection of cytogenetic numerical abnormalities. IEEE Trans. on Information Technology in Biomedicine 11:443-449.
-
(2007)
IEEE Trans. on Information Technology in Biomedicine
, vol.11
, pp. 443-449
-
-
Lerner, B.1
Koushnir, L.2
Yeshaya, J.3
-
28
-
-
18144427513
-
Automatic image orientation detection via confidence-based integration of low-level and semantic cues
-
Luo, J., and M. Boutell. 2005. Automatic image orientation detection via confidence-based integration of low-level and semantic cues. IEEE Trans. on PAMI 27:715-726.
-
(2005)
IEEE Trans. on PAMI
, vol.27
, pp. 715-726
-
-
Luo, J.1
Boutell, M.2
-
30
-
-
8344278032
-
Classification of fluorescence in-situ hybridization images using belief networks
-
Malka, R., and B. Lerner. 2004. Classification of fluorescence in-situ hybridization images using belief networks. Pattern Recognition Letters 25:1777-1785.
-
(2004)
Pattern Recognition Letters
, vol.25
, pp. 1777-1785
-
-
Malka, R.1
Lerner, B.2
-
31
-
-
0003229133
-
The bayes net toolbox for matlab
-
Murphy, K. 2001. The Bayes Net Toolbox for Matlab. Computing Science and Statistics, 33:331-350.
-
(2001)
Computing Science and Statistics
, vol.33
, pp. 331-350
-
-
Murphy, K.1
-
32
-
-
0033855205
-
A review of fluorescence in situ hybridization (FISH): Current status and future prospects
-
Nath, J., and K. L. Johnson. 2000. A review of fluorescence in situ hybridization (FISH): Current status and future prospects. Biotechnic Histochemistry 75:54-78.
-
(2000)
Biotechnic Histochemistry
, vol.75
, pp. 54-78
-
-
Nath, J.1
Johnson, K.L.2
-
33
-
-
0008155075
-
Searching for dependencies in Bayesian classifiers
-
ed. D. Fisher and H. J. Lenz, New York: Springer Verlag
-
Pazzani, M. J. 1996. Searching for dependencies in Bayesian classifiers. In Learning from data: AI and statistics V, ed. D. Fisher and H. J. Lenz, 239-248. New York: Springer Verlag.
-
(1996)
Learning from Data: AI and Statistics V
, pp. 239-248
-
-
Pazzani, M.J.1
-
35
-
-
0007413525
-
A statistical semantics for causation
-
Pearl, J., and T. S. Verma. 1991. A statistical semantics for causation. Statistics and Computing 2:91-95.
-
(1991)
Statistics and Computing
, vol.2
, pp. 91-95
-
-
Pearl, J.1
Verma, T.S.2
-
36
-
-
17144463341
-
Learning Bayesian networks for clustering by means of constructive induction
-
Pena, J. M., J. A. Lozano, and P. Larranaga. 1999. Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognition Letters 20:1219-1230.
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 1219-1230
-
-
Pena, J.M.1
Lozano, J.A.2
Larranaga, P.3
-
37
-
-
33646379109
-
Learning the structure of linear latent variable models
-
Silva, R., R. Scheines, C. Glymour, and P. Spirtes. 2006. Learning the structure of linear latent variable models. Journal of Machine Learning Research 7:191-246.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 191-246
-
-
Silva, R.1
Scheines, R.2
Glymour, C.3
Spirtes, P.4
-
38
-
-
0001173999
-
Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
-
Singh, M., and M. Valtorta. 1995. Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning 12:111-131.
-
(1995)
International Journal of Approximate Reasoning
, vol.12
, pp. 111-131
-
-
Singh, M.1
Valtorta, M.2
-
39
-
-
0003614273
-
-
2nd ed. Cambridge, MA: MIT Press
-
Spirtes, P., C. Glymour, and R. Scheines. 2000. Causality, prediction and search. 2nd ed. Cambridge, MA: MIT Press.
-
(2000)
Causality, Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
40
-
-
68949163877
-
Bayesian network structure learning by recursive autonomy identification
-
Yehezkel, R., and B. Lerner. 2009. Bayesian network structure learning by recursive autonomy identification. Journal of Machine Learning Research 10:1527-1570.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1527-1570
-
-
Yehezkel, R.1
Lerner, B.2
-
41
-
-
18144418947
-
Active and dynamic information fusion for facial expression understanding from image sequences
-
Zhang, Y., and Q. Ji. 2005. Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Trans. on PAMI 27:699-714.
-
(2005)
IEEE Trans. on PAMI
, vol.27
, pp. 699-714
-
-
Zhang, Y.1
Ji, Q.2
|