메뉴 건너뛰기




Volumn 25, Issue 1, 2011, Pages 74-96

Investigation of the K2 algorithm in learning bayesian network classifiers

Author keywords

[No Author keywords available]

Indexed keywords

BARIUM COMPOUNDS; BAYESIAN NETWORKS;

EID: 79251505570     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839514.2011.529265     Document Type: Article
Times cited : (38)

References (41)
  • 2
    • 0003042996 scopus 로고    scopus 로고
    • An algorithm for Bayesian belief network construction from data
    • Ft. Lauderdale, FL
    • Cheng, J., D. A. Bell, and W. Liu. 1997. An algorithm for Bayesian belief network construction from data. In Proc. of AI & STAT' 97, 83-90. Ft. Lauderdale, FL.
    • (1997) Proc. of AI & STAT' , vol.97 , pp. 83-90
    • Cheng, J.1    Bell, D.A.2    Liu, W.3
  • 4
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., and E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9:309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 5
    • 17644374175 scopus 로고    scopus 로고
    • Support vector machine-based image classification for genetic syndrome diagnosis
    • David, A., and B. Lerner. 2005. Support vector machine-based image classification for genetic syndrome diagnosis. Pattern Recognition Letters 26:1029-1038.
    • (2005) Pattern Recognition Letters , vol.26 , pp. 1029-1038
    • David, A.1    Lerner, B.2
  • 9
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • San Francisco: Morgan Kaufmann
    • Friedman, N. 1997. Learning belief networks in the presence of missing values and hidden variables. In Proc. of the 14th Int. Conf. on Machine Learning, 125-133. San Francisco: Morgan Kaufmann.
    • (1997) Proc. of the 14th Int. Conf. on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 11
    • 0012999549 scopus 로고
    • Learning from incomplete data
    • MIT Center for Biological and Computational Learning, Massachusetts
    • Ghahramani, Z., and M. I. Jordan. 1994. Learning from incomplete data. In Technical report 108, MIT Center for Biological and Computational Learning, Massachusetts.
    • (1994) Technical Report 108
    • Ghahramani, Z.1    Jordan, M.I.2
  • 12
    • 21244444642 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • Greiner, R., X. Su, B. Shen, and W. Zhou. 2005. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning 59:297-322.
    • (2005) Machine Learning , vol.59 , pp. 297-322
    • Greiner, R.1    Su, X.2    Shen, B.3    Zhou, W.4
  • 13
    • 14344256569 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers by maximazing conditional likelihood
    • Banff, Canada: ACM Press
    • Grossman, D., and P. Domingos. 2004. Learning Bayesian network classifiers by maximazing conditional likelihood. In Proc. of the 21th Int. Conf. on Machine Learning, 361-368. Banff, Canada: ACM Press.
    • (2004) Proc. of the 21th Int. Conf. on Machine Learning , pp. 361-368
    • Grossman, D.1    Domingos, P.2
  • 15
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Microsoft Research
    • Heckerman, D. 1995. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research.
    • (1995) Technical Report MSR-TR-95-06
    • Heckerman, D.1
  • 16
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., D. Geiger, and D. M. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20:197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 20
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220(4598):671-680.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 22
    • 0001901666 scopus 로고
    • Induction of selective Bayesian classifiers
    • ed. R. Lopez de Mantaras and D. Poole, Seatle, WA: Morgan Kaufmann
    • Langley, P., and S. Sage. 1994. Induction of selective Bayesian classifiers. In Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence, ed. R. Lopez de Mantaras and D. Poole, 399-406. Seatle, WA: Morgan Kaufmann.
    • (1994) Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence , pp. 399-406
    • Langley, P.1    Sage, S.2
  • 23
    • 0001006209 scopus 로고
    • Local computation with probabilities on graphical structures and their application to expert systems
    • Lauritzen, S. L., and D. J. Spiegelhalter. 1988. Local computation with probabilities on graphical structures and their application to expert systems. Journal of Royal Statistics B 50:157-224.
    • (1988) Journal of Royal Statistics B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 24
    • 1842714926 scopus 로고    scopus 로고
    • Bayesian fluorescence in-situ hybridization signal classification
    • Lerner, B. 2004. Bayesian fluorescence in-situ hybridization signal classification. Artificial Intelligence in Medicine 30:301-316.
    • (2004) Artificial Intelligence in Medicine , vol.30 , pp. 301-316
    • Lerner, B.1
  • 25
    • 0035521286 scopus 로고    scopus 로고
    • Feature representation and signal classification in fluorescence in-situ hybridization image analysis
    • Lerner, B., W. F. Clocksin, S. Dhanjal, M. A. Hultén, and C. M. Bishop. 2001. Feature representation and signal classification in fluorescence in-situ hybridization image analysis. IEEE Trans. on SMC A 31:655-665.
    • (2001) IEEE Trans. on SMC A , vol.31 , pp. 655-665
    • Lerner, B.1    Clocksin, W.F.2    Dhanjal, S.3    Hultén, M.A.4    Bishop, C.M.5
  • 26
    • 34547131059 scopus 로고    scopus 로고
    • Segmentation and classification of dot and non-dot-like fluorescence in-situ hybridization signals for automated detection of cytogenetic numerical abnormalities
    • Lerner, B., L. Koushnir, and J. Yeshaya. 2007. Segmentation and classification of dot and non-dot-like fluorescence in-situ hybridization signals for automated detection of cytogenetic numerical abnormalities. IEEE Trans. on Information Technology in Biomedicine 11:443-449.
    • (2007) IEEE Trans. on Information Technology in Biomedicine , vol.11 , pp. 443-449
    • Lerner, B.1    Koushnir, L.2    Yeshaya, J.3
  • 28
    • 18144427513 scopus 로고    scopus 로고
    • Automatic image orientation detection via confidence-based integration of low-level and semantic cues
    • Luo, J., and M. Boutell. 2005. Automatic image orientation detection via confidence-based integration of low-level and semantic cues. IEEE Trans. on PAMI 27:715-726.
    • (2005) IEEE Trans. on PAMI , vol.27 , pp. 715-726
    • Luo, J.1    Boutell, M.2
  • 30
    • 8344278032 scopus 로고    scopus 로고
    • Classification of fluorescence in-situ hybridization images using belief networks
    • Malka, R., and B. Lerner. 2004. Classification of fluorescence in-situ hybridization images using belief networks. Pattern Recognition Letters 25:1777-1785.
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1777-1785
    • Malka, R.1    Lerner, B.2
  • 31
  • 32
    • 0033855205 scopus 로고    scopus 로고
    • A review of fluorescence in situ hybridization (FISH): Current status and future prospects
    • Nath, J., and K. L. Johnson. 2000. A review of fluorescence in situ hybridization (FISH): Current status and future prospects. Biotechnic Histochemistry 75:54-78.
    • (2000) Biotechnic Histochemistry , vol.75 , pp. 54-78
    • Nath, J.1    Johnson, K.L.2
  • 33
    • 0008155075 scopus 로고    scopus 로고
    • Searching for dependencies in Bayesian classifiers
    • ed. D. Fisher and H. J. Lenz, New York: Springer Verlag
    • Pazzani, M. J. 1996. Searching for dependencies in Bayesian classifiers. In Learning from data: AI and statistics V, ed. D. Fisher and H. J. Lenz, 239-248. New York: Springer Verlag.
    • (1996) Learning from Data: AI and Statistics V , pp. 239-248
    • Pazzani, M.J.1
  • 35
    • 0007413525 scopus 로고
    • A statistical semantics for causation
    • Pearl, J., and T. S. Verma. 1991. A statistical semantics for causation. Statistics and Computing 2:91-95.
    • (1991) Statistics and Computing , vol.2 , pp. 91-95
    • Pearl, J.1    Verma, T.S.2
  • 36
    • 17144463341 scopus 로고    scopus 로고
    • Learning Bayesian networks for clustering by means of constructive induction
    • Pena, J. M., J. A. Lozano, and P. Larranaga. 1999. Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognition Letters 20:1219-1230.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1219-1230
    • Pena, J.M.1    Lozano, J.A.2    Larranaga, P.3
  • 38
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
    • Singh, M., and M. Valtorta. 1995. Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning 12:111-131.
    • (1995) International Journal of Approximate Reasoning , vol.12 , pp. 111-131
    • Singh, M.1    Valtorta, M.2
  • 40
    • 68949163877 scopus 로고    scopus 로고
    • Bayesian network structure learning by recursive autonomy identification
    • Yehezkel, R., and B. Lerner. 2009. Bayesian network structure learning by recursive autonomy identification. Journal of Machine Learning Research 10:1527-1570.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1527-1570
    • Yehezkel, R.1    Lerner, B.2
  • 41
    • 18144418947 scopus 로고    scopus 로고
    • Active and dynamic information fusion for facial expression understanding from image sequences
    • Zhang, Y., and Q. Ji. 2005. Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Trans. on PAMI 27:699-714.
    • (2005) IEEE Trans. on PAMI , vol.27 , pp. 699-714
    • Zhang, Y.1    Ji, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.