메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages 1713-1741

Considering cost asymmetry in learning classifiers

Author keywords

Linear classification; Receiver operating characteristic (ROC) analysis; Support vector machines

Indexed keywords

BINARY SEQUENCES; COMPUTATIONAL COMPLEXITY; COSTS; LEARNING SYSTEMS; PARAMETER ESTIMATION; PERSONNEL TRAINING; SET THEORY; VECTORS;

EID: 33747350759     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (125)

References (23)
  • 8
    • 1942421135 scopus 로고    scopus 로고
    • The geometry of ROC space: Understanding machine learning metrics through ROC isometrics
    • P. A. Flach. The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In International Conference on Machine Learning (ICML), 2003.
    • (2003) International Conference on Machine Learning (ICML)
    • Flach, P.A.1
  • 13
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2): 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 16
  • 17
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods: Support Vector Learning. MIT Press, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Learning
    • Platt, J.1
  • 18
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning Journal, 42(3):203-231, 2001.
    • (2001) Machine Learning Journal , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 19
    • 33745798002 scopus 로고    scopus 로고
    • An efficient implementation of an active set method for SVM
    • to appear
    • K. Scheinberg. An efficient implementation of an active set method for SVM. Journal of Machine Learning Research, to appear, 2006.
    • (2006) Journal of Machine Learning Research
    • Scheinberg, K.1
  • 23
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics, 32:56-85, 2004.
    • (2004) Annals of Statistics , vol.32 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.