-
1
-
-
0003713964
-
-
Athena Scientific, Belmont, Massachussetts
-
D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachussetts, 1999.
-
(1999)
Nonlinear Programming
-
-
Bertsekas, D.P.1
-
3
-
-
0003408496
-
UCI repository of machine learning databases
-
University of California, Irvine
-
C. L. Blake and C. J. Merz. UCI repository of machine learning databases. Technical report, University of California, Irvine, 1998. www.ics.uci.edu/ ~mlearn/MLRepository.html.
-
(1998)
Technical Report
-
-
Blake, C.L.1
Merz, C.J.2
-
4
-
-
0041513204
-
Fast and accurate text classification via multiple linear discriminant projections
-
S. Chakrabarti, S. Roy, and M. V. Soundalgekar. Fast and accurate text classification via multiple linear discriminant projections. The VLDB Journal, 12:170-185, 2003.
-
(2003)
The VLDB Journal
, vol.12
, pp. 170-185
-
-
Chakrabarti, S.1
Roy, S.2
Soundalgekar, M.V.3
-
5
-
-
21844462756
-
New approaches to support vector ordinal regression
-
Yahoo! Research Labs, Pasadena, California, USA
-
W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. Technical report, Yahoo! Research Labs, Pasadena, California, USA, 2005.
-
(2005)
Technical Report
-
-
Chu, W.1
Keerthi, S.S.2
-
7
-
-
0033294957
-
Fast CG-based methods for Tikhonov-Phillips regularization
-
A. Frommer and P. Maaß. Fast CG-based methods for Tikhonov-Phillips regularization. SIAM Journal of Scientific Computing, 20(5): 1831-1850, 1999.
-
(1999)
SIAM Journal of Scientific Computing
, vol.20
, Issue.5
, pp. 1831-1850
-
-
Frommer, A.1
Maaß, P.2
-
9
-
-
0036158552
-
A simple decomposition method for support vector machines
-
C. W. Hsu and C. J. Lin. A simple decomposition method for support vector machines. Machine Learning, 46:291-314, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 291-314
-
-
Hsu, C.W.1
Lin, C.J.2
-
11
-
-
3042616550
-
Decomposition methods for linear support vector machines
-
W. C. Kao, K.M. Chung, T. Sun, and C. J. Lin. Decomposition methods for linear support vector machines. Neural Computation, 16:1689-1704, 2004.
-
(2004)
Neural Computation
, vol.16
, pp. 1689-1704
-
-
Kao, W.C.1
Chung, K.M.2
Sun, T.3
Lin, C.J.4
-
12
-
-
21844434579
-
-
Ph.d. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
-
P. Komarek. Logistic regression for data mining and high-dimensional classification. Ph.d. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2004.
-
(2004)
Logistic Regression for Data Mining and High-dimensional Classification
-
-
Komarek, P.1
-
14
-
-
0004141898
-
Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering
-
University of Massachssetts, Amherst, Massachusetts, USA
-
A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering. Technical report, University of Massachssetts, Amherst, Massachusetts, USA, 1996. www.cs.cmu.edu/~mccallum/bow.
-
(1996)
Technical Report
-
-
McCallum, A.1
-
15
-
-
0039943513
-
LSQR: An algorithm for sparse linear equations and sparse least squares
-
C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares,. ACM Transactions on Mathematical Software, 8:43-71, 1982.
-
(1982)
ACM Transactions on Mathematical Software
, vol.8
, pp. 43-71
-
-
Paige, C.C.1
Saunders, M.A.2
-
16
-
-
0003120218
-
Sequential minimal optimization: A fast algorithm for training support vector machines
-
MIT Press, Cambridge, Massachusetts
-
J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. In Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, Massachusetts, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
-
-
Platt, J.1
-
17
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
18
-
-
1942420344
-
Modified logistic regression: An approximation to SVM and its applications in large-scale text categorization
-
J. Zhang, R. Jin, Y. Yang, and A. Hauptmann. Modified logistic regression: An approximation to SVM and its applications in large-scale text categorization. In Twentieth International Conference on Machine Learning, pages 472-479, 2003.
-
(2003)
Twentieth International Conference on Machine Learning
, pp. 472-479
-
-
Zhang, J.1
Jin, R.2
Yang, Y.3
Hauptmann, A.4
-
19
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statistics, 32:56-85, 2004.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 56-85
-
-
Zhang, T.1
|