메뉴 건너뛰기




Volumn 15, Issue 1, 2004, Pages 29-44

Bayesian support vector regression using a unified loss function

Author keywords

Automatic relevance determination; Bayesian inference; Gaussian processes; Model selection; Nonquadratic loss function; Support vector regression

Indexed keywords

COMPUTER SIMULATION; ERROR ANALYSIS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PROBLEM SOLVING; QUADRATIC PROGRAMMING; REGRESSION ANALYSIS;

EID: 1242331293     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2003.820830     Document Type: Article
Times cited : (133)

References (41)
  • 1
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back propagation networks
    • D. J. C. MacKay, "A practical Bayesian framework for back propagation networks," Neural Computation, vol. 4, no. 3, pp. 448-472, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 2
    • 0003834631 scopus 로고
    • Bayesian training of backpropagation networks by the hybrid Monte Carlo method
    • Department of Statistics, University of Toronto, Tech. Rep.CRG-TR-92-1
    • R. M. Neal, "Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo Method," Department of Statistics, University of Toronto, Tech. Rep.CRG-TR-92-1, 1992.
    • (1992)
    • Neal, R.M.1
  • 3
    • 0001561263 scopus 로고
    • Bayesian back-propagation
    • W. L. Buntine and A. S. Weigend, "Bayesian back-propagation," Complex Systems, vol. 5, no. 6, pp. 603-643, 1991.
    • (1991) Complex Systems , vol.5 , Issue.6 , pp. 603-643
    • Buntine, W.L.1    Weigend, A.S.2
  • 5
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • D. J. C. MacKay, "Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks," Network: Computation in Neural Syst., vol. 6, no. 3, pp. 469-505, 1995.
    • (1995) Network: Computation in Neural Syst. , vol.6 , Issue.3 , pp. 469-505
    • MacKay, D.J.C.1
  • 6
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks - Reviews and case studies
    • J. Lampinen and A Vehtari, "Bayesian approach for neural networks - reviews and case studies," Neural Netw., vol. 14, pp. 257-274, 2001.
    • (2001) Neural Netw. , vol.14 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 8
    • 0002295913 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
    • C. K. I. Williams and C. E. Rasmussen, "Gaussian processes for regression," in Advances in Neural Information Processing Systems, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996, vol. 8, pp. 598-604.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 598-604
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 9
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • Norwell, MA: Kluwer
    • C. K. I. Williams, "Prediction with Gaussian processes: from linear regression to linear prediction and beyond," in Learning and Inference in Graphical Models. Norwell, MA: Kluwer, 1998.
    • (1998) Learning and Inference in Graphical Models
    • Williams, C.K.I.1
  • 10
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • New York: Springer-Verlag
    • V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
    • (1995)
    • Vapnik, V.N.1
  • 12
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • Sept.
    • J. T. Kwok, "The evidence framework applied to support vector machines," IEEE Trans. Neural Networks, vol. 11, pp. 1162-1173, Sept. 2000.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 1162-1173
    • Kwok, J.T.1
  • 13
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
    • M. Seeger, "Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers," in Advances in Neural Information Processing Systems, vol. 12, 2000, pp. 603-609.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 603-609
    • Seeger, M.1
  • 14
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • P. Sollich, "Bayesian methods for support vector machines: evidence and predictive class probabilities," Machine Learning, vol. 46, pp. 21-52, 2002.
    • (2002) Machine Learning , vol.46 , pp. 21-52
    • Sollich, P.1
  • 16
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • Mar.
    • J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown, "A probabilistic framework for SVM regression and error bar estimation," Machine Learning, vol. 46, pp. 71-89, Mar. 2002.
    • (2002) Machine Learning , vol.46 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3    Brown, M.4
  • 18
    • 34250122797 scopus 로고
    • Interpolation of scatter data: Distance matrices and conditionally positive definite functions
    • C. A. Micchelli, "Interpolation of scatter data: distance matrices and conditionally positive definite functions," Constructive Approximation, vol. 2, pp. 11-22, 1986.
    • (1986) Constructive Approximation , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 20
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline function
    • G. S. Kimeldorf and G. Wahba, "Some results on Tchebycheffian spline function," J. Math. Analysis Applicat., vol. 33, pp. 82-95, 1971.
    • (1971) J. Math. Analysis Applicat. , vol.33 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 24
    • 48349098662 scopus 로고    scopus 로고
    • A unified loss function in Bayesian framework for support vector regression
    • W. Chu, S. S. Keerthi, and C. J. Ong, "A unified loss function in Bayesian framework for support vector regression," in Proc. 18th Int. Conf. Machine Learning, 2001, http://guppy.mpe.nus.edu.sg/~mpessk/svm/icml.pdf., pp. 51-58.
    • Proc. 18th Int. Conf. Machine Learning, 2001 , pp. 51-58
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 26
    • 0003782186 scopus 로고    scopus 로고
    • Norwell, MA: Kluwer, June; Int. Series in Operations Research and Management Science
    • R. J. Vanderbei, Linear Programming: Foundations and Extensions, 2nd ed. Norwell, MA: Kluwer, June 2001, vol. 37, Int. Series in Operations Research and Management Science.
    • (2001) Linear Programming: Foundations and Extensions, 2nd Ed. , vol.37
    • Vanderbei, R.J.1
  • 27
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • GMD First, Technical Report NC2-TR-1998-030, Oct.
    • A. J. Smola and B. Schölkopf, "A Tutorial on Support Vector Regression,", GMD First, Technical Report NC2-TR-1998-030, Oct. 1998.
    • (1998)
    • Smola, A.J.1    Schölkopf, B.2
  • 29
    • 26544452393 scopus 로고    scopus 로고
    • Bayesian approach to support vector machines
    • Ph.D. disserttion, Nat. Univ. Singapore, Jan.
    • W. Chu, "Bayesian approach to support vector machines," Ph.D. dissertation, Nat. Univ. Singapore, Jan. 2003.
    • (2003)
    • Chu, W.1
  • 31
    • 0037313407 scopus 로고    scopus 로고
    • SMO algorithm for least squares SVM formulations
    • Feb.
    • S. S. Keerthi and S. K. Shevade, "SMO algorithm for least squares SVM formulations," Neural Computation, vol. 15, no. 2, pp. 487-507, Feb. 2003.
    • (2003) Neural Computation , vol.15 , Issue.2 , pp. 487-507
    • Keerthi, S.S.1    Shevade, S.K.2
  • 34
    • 0000335983 scopus 로고
    • Bayesian methods for backpropagation networks
    • D. J. C. MacKay, "Bayesian methods for backpropagation networks," Models of Neural Networks III, pp. 211-254, 1994.
    • (1994) Models of Neural Networks III , pp. 211-254
    • MacKay, D.J.C.1
  • 35
    • 84958574092 scopus 로고    scopus 로고
    • New support vector machines
    • GMD FIRST, NeuroCOLT2 Tech. Rep. NC2-TR-1998-031
    • B. Schölkopf and A. J. Smola, "New Support Vector Machines,", GMD FIRST, NeuroCOLT2 Tech. Rep. NC2-TR-1998-031, vol. 1998.
    • , vol.1998
    • Schölkopf, B.1    Smola, A.J.2
  • 39
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. H. Byrd, P. Lu, and J. Nocedal, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Stat. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
    • (1995) SIAM J. Sci. Stat. Comput. , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3
  • 41
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • S. A. Solla, T. K. Leen, and K.-R. Mller, Eds. Cambridge, MA: MIT Press
    • M. E. Tipping, "The relevance vector machine," in Advances in Neural Information Processing Systems 12, S. A. Solla, T. K. Leen, and K.-R. Mller, Eds. Cambridge, MA: MIT Press, 2000, pp. 652-658.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 652-658
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.