-
1
-
-
0002704818
-
A practical Bayesian framework for back propagation networks
-
D. J. C. MacKay, "A practical Bayesian framework for back propagation networks," Neural Computation, vol. 4, no. 3, pp. 448-472, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
2
-
-
0003834631
-
Bayesian training of backpropagation networks by the hybrid Monte Carlo method
-
Department of Statistics, University of Toronto, Tech. Rep.CRG-TR-92-1
-
R. M. Neal, "Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo Method," Department of Statistics, University of Toronto, Tech. Rep.CRG-TR-92-1, 1992.
-
(1992)
-
-
Neal, R.M.1
-
3
-
-
0001561263
-
Bayesian back-propagation
-
W. L. Buntine and A. S. Weigend, "Bayesian back-propagation," Complex Systems, vol. 5, no. 6, pp. 603-643, 1991.
-
(1991)
Complex Systems
, vol.5
, Issue.6
, pp. 603-643
-
-
Buntine, W.L.1
Weigend, A.S.2
-
5
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
D. J. C. MacKay, "Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks," Network: Computation in Neural Syst., vol. 6, no. 3, pp. 469-505, 1995.
-
(1995)
Network: Computation in Neural Syst.
, vol.6
, Issue.3
, pp. 469-505
-
-
MacKay, D.J.C.1
-
6
-
-
0035312886
-
Bayesian approach for neural networks - Reviews and case studies
-
J. Lampinen and A Vehtari, "Bayesian approach for neural networks - reviews and case studies," Neural Netw., vol. 14, pp. 257-274, 2001.
-
(2001)
Neural Netw.
, vol.14
, pp. 257-274
-
-
Lampinen, J.1
Vehtari, A.2
-
8
-
-
0002295913
-
Gaussian processes for regression
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
-
C. K. I. Williams and C. E. Rasmussen, "Gaussian processes for regression," in Advances in Neural Information Processing Systems, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996, vol. 8, pp. 598-604.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 598-604
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
9
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
Norwell, MA: Kluwer
-
C. K. I. Williams, "Prediction with Gaussian processes: from linear regression to linear prediction and beyond," in Learning and Inference in Graphical Models. Norwell, MA: Kluwer, 1998.
-
(1998)
Learning and Inference in Graphical Models
-
-
Williams, C.K.I.1
-
10
-
-
0003450542
-
The Nature of Statistical Learning Theory
-
New York: Springer-Verlag
-
V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
-
(1995)
-
-
Vapnik, V.N.1
-
12
-
-
0034271876
-
The evidence framework applied to support vector machines
-
Sept.
-
J. T. Kwok, "The evidence framework applied to support vector machines," IEEE Trans. Neural Networks, vol. 11, pp. 1162-1173, Sept. 2000.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, pp. 1162-1173
-
-
Kwok, J.T.1
-
13
-
-
84898947199
-
Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
-
M. Seeger, "Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers," in Advances in Neural Information Processing Systems, vol. 12, 2000, pp. 603-609.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 603-609
-
-
Seeger, M.1
-
14
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
P. Sollich, "Bayesian methods for support vector machines: evidence and predictive class probabilities," Machine Learning, vol. 46, pp. 21-52, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
15
-
-
13644277778
-
Bayesian support vector regression
-
M. H. Law and J. T. Kwok, "Bayesian support vector regression," in Proc. 8th Int. Workshop on Artificial Intelligence and Statistics (AIS-TATS), Key West, FL, 2001, pp. 239-244.
-
Proc. 8th Int. Workshop on Artificial Intelligence and Statistics (AIS-TATS), Key West, FL, 2001
, pp. 239-244
-
-
Law, M.H.1
Kwok, J.T.2
-
16
-
-
0036161010
-
A probabilistic framework for SVM regression and error bar estimation
-
Mar.
-
J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown, "A probabilistic framework for SVM regression and error bar estimation," Machine Learning, vol. 46, pp. 71-89, Mar. 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 71-89
-
-
Gao, J.B.1
Gunn, S.R.2
Harris, C.J.3
Brown, M.4
-
17
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
C. Saunders, A. Gammerman, and V. Vovk, "Ridge regression learning algorithm in dual variables," in Proc. 15th Int. Conference on Machine Learning, 1998, pp. 515-521.
-
Proc. 15th Int. Conference on Machine Learning, 1998
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
18
-
-
34250122797
-
Interpolation of scatter data: Distance matrices and conditionally positive definite functions
-
C. A. Micchelli, "Interpolation of scatter data: distance matrices and conditionally positive definite functions," Constructive Approximation, vol. 2, pp. 11-22, 1986.
-
(1986)
Constructive Approximation
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
19
-
-
0003798631
-
-
MIT, Cambridge, MA; A.I. Memo 1654
-
T. Evgeniou, M. Pontil, and T. Poggio, A Unified Framework for Regularization Networks and Support Vector Machines, MIT, Cambridge, MA, 1999. A.I. Memo 1654.
-
(1999)
A Unified Framework for Regularization Networks and Support Vector Machines
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
20
-
-
0015000439
-
Some results on Tchebycheffian spline function
-
G. S. Kimeldorf and G. Wahba, "Some results on Tchebycheffian spline function," J. Math. Analysis Applicat., vol. 33, pp. 82-95, 1971.
-
(1971)
J. Math. Analysis Applicat.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
23
-
-
0008197560
-
-
MIT, Artificial Intelligence Lab.; A.I. Memo 1651
-
M. Pontil, S. Mukherjee, and F. Girosi, On the Noise Model of Support Vector Regression, MIT, Artificial Intelligence Lab., 1998. A.I. Memo 1651.
-
(1998)
On the Noise Model of Support Vector Regression
-
-
Pontil, M.1
Mukherjee, S.2
Girosi, F.3
-
24
-
-
48349098662
-
A unified loss function in Bayesian framework for support vector regression
-
W. Chu, S. S. Keerthi, and C. J. Ong, "A unified loss function in Bayesian framework for support vector regression," in Proc. 18th Int. Conf. Machine Learning, 2001, http://guppy.mpe.nus.edu.sg/~mpessk/svm/icml.pdf., pp. 51-58.
-
Proc. 18th Int. Conf. Machine Learning, 2001
, pp. 51-58
-
-
Chu, W.1
Keerthi, S.S.2
Ong, C.J.3
-
26
-
-
0003782186
-
-
Norwell, MA: Kluwer, June; Int. Series in Operations Research and Management Science
-
R. J. Vanderbei, Linear Programming: Foundations and Extensions, 2nd ed. Norwell, MA: Kluwer, June 2001, vol. 37, Int. Series in Operations Research and Management Science.
-
(2001)
Linear Programming: Foundations and Extensions, 2nd Ed.
, vol.37
-
-
Vanderbei, R.J.1
-
27
-
-
0003401675
-
A tutorial on support vector regression
-
GMD First, Technical Report NC2-TR-1998-030, Oct.
-
A. J. Smola and B. Schölkopf, "A Tutorial on Support Vector Regression,", GMD First, Technical Report NC2-TR-1998-030, Oct. 1998.
-
(1998)
-
-
Smola, A.J.1
Schölkopf, B.2
-
28
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Sept.
-
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to the SMO algorithm for SVM regression," IEEE Trans. Neural Networks, vol. 11, pp. 1188-1194, Sept. 2000.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, pp. 1188-1194
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
29
-
-
26544452393
-
Bayesian approach to support vector machines
-
Ph.D. disserttion, Nat. Univ. Singapore, Jan.
-
W. Chu, "Bayesian approach to support vector machines," Ph.D. dissertation, Nat. Univ. Singapore, Jan. 2003.
-
(2003)
-
-
Chu, W.1
-
31
-
-
0037313407
-
SMO algorithm for least squares SVM formulations
-
Feb.
-
S. S. Keerthi and S. K. Shevade, "SMO algorithm for least squares SVM formulations," Neural Computation, vol. 15, no. 2, pp. 487-507, Feb. 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.2
, pp. 487-507
-
-
Keerthi, S.S.1
Shevade, S.K.2
-
32
-
-
30044450197
-
Feature selection and dualities in maximum entropy discrimination
-
T. S. Jebara and T. S. Jaakkola, "Feature selection and dualities in maximum entropy discrimination," in Proc. 16th Conf. Uncertainty in Artificial Intelligence (UAI-2000), San Francisco, CA, 2000, pp. 291-300.
-
Proc. 16th Conf. Uncertainty in Artificial Intelligence (UAI-2000), San Francisco, CA, 2000
, pp. 291-300
-
-
Jebara, T.S.1
Jaakkola, T.S.2
-
33
-
-
84898948710
-
Feature selection in SVMs
-
T. Leen, T. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, and T. Poggio, "Feature selection in SVMs," in Advances in Neural Information Processing Systems, T. Leen, T. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, vol. 13.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
-
34
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
D. J. C. MacKay, "Bayesian methods for backpropagation networks," Models of Neural Networks III, pp. 211-254, 1994.
-
(1994)
Models of Neural Networks III
, pp. 211-254
-
-
MacKay, D.J.C.1
-
35
-
-
84958574092
-
New support vector machines
-
GMD FIRST, NeuroCOLT2 Tech. Rep. NC2-TR-1998-031
-
B. Schölkopf and A. J. Smola, "New Support Vector Machines,", GMD FIRST, NeuroCOLT2 Tech. Rep. NC2-TR-1998-031, vol. 1998.
-
, vol.1998
-
-
Schölkopf, B.1
Smola, A.J.2
-
36
-
-
84871066872
-
Applying the Bayesian evidence framework to ν-support vector regression
-
M. H. Law and J. T. Kwok, "Applying the Bayesian evidence framework to ν-support vector regression," in Proc. 12th Eur. Conf. Machine Learning, Freiburg, Germany, 2001, pp. 312-323.
-
(2001)
Proc. 12th Eur. Conf. Machine Learning, Freiburg, Germany
, pp. 312-323
-
-
Law, M.H.1
Kwok, J.T.2
-
38
-
-
4243137056
-
Hybrid Monte Carlo
-
S. Duane, A. D. Kennedy, and B. J. Pendleton, "Hybrid Monte Carlo," Phys. Lett. B, vol. 195, no. 2, pp. 216-222, 1987.
-
(1987)
Phys. Lett. B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
-
39
-
-
0000732463
-
A limited memory algorithm for bound constrained optimization
-
R. H. Byrd, P. Lu, and J. Nocedal, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Stat. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
-
(1995)
SIAM J. Sci. Stat. Comput.
, vol.16
, Issue.5
, pp. 1190-1208
-
-
Byrd, R.H.1
Lu, P.2
Nocedal, J.3
-
40
-
-
84956628443
-
Using support vector machines for time series prediction
-
W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, Eds. Berlin: springer
-
K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik, "Using support vector machines for time series prediction," in Proc. Int. Conf. Artificial Neural Networks ICANN '97, W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, Eds. Berlin: springer, 1997, pp. 999-1004.
-
(1997)
Proc. Int. Conf. Artificial Neural Networks ICANN '97
, pp. 999-1004
-
-
Müller, K.-R.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
41
-
-
84899032239
-
The relevance vector machine
-
S. A. Solla, T. K. Leen, and K.-R. Mller, Eds. Cambridge, MA: MIT Press
-
M. E. Tipping, "The relevance vector machine," in Advances in Neural Information Processing Systems 12, S. A. Solla, T. K. Leen, and K.-R. Mller, Eds. Cambridge, MA: MIT Press, 2000, pp. 652-658.
-
(2000)
Advances in Neural Information Processing Systems 12
, pp. 652-658
-
-
Tipping, M.E.1
|