메뉴 건너뛰기




Volumn 19, Issue 6, 2007, Pages 1633-1655

Efficient computation and model selection for the support vector regression

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; BIOLOGICAL MODEL; COMPUTER SIMULATION; ECONOMICS; HUMAN; REGRESSION ANALYSIS; TIME;

EID: 34249726632     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.6.1633     Document Type: Article
Times cited : (59)

References (32)
  • 1
    • 84971957489 scopus 로고
    • Continuation and path following
    • Allgower, E., & Georg, K. (1993). Continuation and path following. Acta Numerica, 2, 1-64.
    • (1993) Acta Numerica , vol.2 , pp. 1-64
    • Allgower, E.1    Georg, K.2
  • 2
    • 0003710380 scopus 로고    scopus 로고
    • Taipei: Department of Computer Science and Information Engineering, National Taiwan University. Available online at
    • Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines. Taipei: Department of Computer Science and Information Engineering, National Taiwan University. Available online at http://www.csie.ntu.edu.tw/cjlin/libsvm/.
    • (2001) LIBSVM: A library for support vector machines
    • Chang, C.C.1    Lin, C.J.2
  • 3
    • 0038895405 scopus 로고    scopus 로고
    • Training v-support vector regression: Theory and algorithms
    • Chang, C. C., & Lin, C. J. (2002). Training v-support vector regression: Theory and algorithms. Neural Computation, 14(8), 1959-1977.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1959-1977
    • Chang, C.C.1    Lin, C.J.2
  • 4
    • 17444398555 scopus 로고    scopus 로고
    • Lea ve-one-outbounds for support vector regression model selection
    • Chang, M. W., & Lin, C. J. (2005). Lea ve-one-outbounds for support vector regression model selection. Neural Computation, 17, 1188-1222.
    • (2005) Neural Computation , vol.17 , pp. 1188-1222
    • Chang, M.W.1    Lin, C.J.2
  • 5
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline function
    • Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline function. Numerical Mathematics, 31, 377-403.
    • (1979) Numerical Mathematics , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 7
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association, 81, 461-470.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 461-470
    • Efron, B.1
  • 8
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. Journal of the American Statistical Association, 99, 619-632.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 619-632
    • Efron, B.1
  • 9
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1-67.
    • (1991) Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.1
  • 10
    • 0042659381 scopus 로고    scopus 로고
    • Reoptimization with the primal-dual interior point method
    • Gondzio, J., & Grothey, A. (2001). Reoptimization with the primal-dual interior point method. SIAM, journal on Optimization, 13, 842-864.
    • (2001) SIAM, journal on Optimization , vol.13 , pp. 842-864
    • Gondzio, J.1    Grothey, A.2
  • 12
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A., & Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(3), 55-67.
    • (1970) Technometrics , vol.12 , Issue.3 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 13
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, & A. Smola Eds, Cambridge, MA: MIT Press
    • Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 169-184). Cambridge, MA: MIT Press.
    • (1999) Advances in kernel methods - Support vector learning , pp. 169-184
    • Joachims, T.1
  • 16
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma, J., Theiler, J., & Perkins, S. (2003). Accurate on-line support vector regression. Neural Computation, 15, 2683-2703.
    • (2003) Neural Computation , vol.15 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2    Perkins, S.3
  • 17
    • 0034237944 scopus 로고    scopus 로고
    • On the degrees of freedom in shape-restricted regression
    • Meyer, M., & Woodroofe, M. (2000). On the degrees of freedom in shape-restricted regression. Annals of Statistics, 28, 1083-1104.
    • (2000) Annals of Statistics , vol.28 , pp. 1083-1104
    • Meyer, M.1    Woodroofe, M.2
  • 19
    • 34249698328 scopus 로고    scopus 로고
    • O'Sullivan, F. (1985). Discussion of Some aspects of the spline smoothing approach to nonparametric curve fitting by B. W. Silverman. Journal of the. Royal Statistical Society, Series B, 36, 111-147.
    • O'Sullivan, F. (1985). Discussion of "Some aspects of the spline smoothing approach to nonparametric curve fitting" by B. W. Silverman. Journal of the. Royal Statistical Society, Series B, 36, 111-147.
  • 21
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, & A. Smola Eds, Cambridge, MA: MIT Press
    • Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 185-208). Cambridge, MA: MIT Press.
    • (1999) Advances in kernel methods - Support vector learning , pp. 185-208
    • Platt, J.1
  • 23
    • 33846917957 scopus 로고    scopus 로고
    • A temporal kernel-based model for tracking hand movements from neural activities
    • L. K. Saul, Y. Weiss, & L. Bottou Eds, Cambridge, MA: MIT Press
    • Shpigelman, L., Crammer, K., Paz, R., Vaadia, E., & Singer, Y. (2004). A temporal kernel-based model for tracking hand movements from neural activities. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems , vol.17
    • Shpigelman, L.1    Crammer, K.2    Paz, R.3    Vaadia, E.4    Singer, Y.5
  • 24
    • 4043137356 scopus 로고    scopus 로고
    • Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199-222.1
    • Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199-222.1
  • 25
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 9(6), 1135-1151.
    • (1981) Annals of Statistics , vol.9 , Issue.6 , pp. 1135-1151
    • Stein, C.1
  • 26
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical predictors (with discussion)
    • Stone, M. (1974). Cross-validation choice and assessment of statistical predictors (with discussion). Journal of the Royal Statistical Society Series B, 36, 111-147.
    • (1974) Journal of the Royal Statistical Society Series B , vol.36 , pp. 111-147
    • Stone, M.1
  • 27
    • 34249710422 scopus 로고    scopus 로고
    • Vanderbei, R. (1994). LOQO: An interior point code, for quadratic programming (Tech. Rep., Statistics and Operations Research SOR-94-15). Princeton, NJ: Princeton University.
    • Vanderbei, R. (1994). LOQO: An interior point code, for quadratic programming (Tech. Rep., Statistics and Operations Research SOR-94-15). Princeton, NJ: Princeton University.
  • 29
    • 0000448091 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan, T. Petsche Eds, Cambridge, MA: MIT Press
    • Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
    • (1996) Advances in neural information processing systems , vol.9
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 31
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • Ye, J. (1998). On measuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association, 93(441), 120-131.
    • (1998) Journal of the American Statistical Association , vol.93 , Issue.441 , pp. 120-131
    • Ye, J.1
  • 32
    • 33645581305 scopus 로고    scopus 로고
    • On the degrees of freedom of the lasso
    • Palo Alto, CA: Department of Statistics, Stanford University
    • Zou, H., Hastie, T., & Tibshirani, R. (2005). On the degrees of freedom of the lasso (Tech. Rep.). Palo Alto, CA: Department of Statistics, Stanford University.
    • (2005) Tech. Rep
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.