-
1
-
-
84971957489
-
Continuation and path following
-
Allgower, E., & Georg, K. (1993). Continuation and path following. Acta Numerica, 2, 1-64.
-
(1993)
Acta Numerica
, vol.2
, pp. 1-64
-
-
Allgower, E.1
Georg, K.2
-
2
-
-
0003710380
-
-
Taipei: Department of Computer Science and Information Engineering, National Taiwan University. Available online at
-
Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines. Taipei: Department of Computer Science and Information Engineering, National Taiwan University. Available online at http://www.csie.ntu.edu.tw/cjlin/libsvm/.
-
(2001)
LIBSVM: A library for support vector machines
-
-
Chang, C.C.1
Lin, C.J.2
-
3
-
-
0038895405
-
Training v-support vector regression: Theory and algorithms
-
Chang, C. C., & Lin, C. J. (2002). Training v-support vector regression: Theory and algorithms. Neural Computation, 14(8), 1959-1977.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1959-1977
-
-
Chang, C.C.1
Lin, C.J.2
-
4
-
-
17444398555
-
Lea ve-one-outbounds for support vector regression model selection
-
Chang, M. W., & Lin, C. J. (2005). Lea ve-one-outbounds for support vector regression model selection. Neural Computation, 17, 1188-1222.
-
(2005)
Neural Computation
, vol.17
, pp. 1188-1222
-
-
Chang, M.W.1
Lin, C.J.2
-
5
-
-
34250263445
-
Smoothing noisy data with spline function
-
Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline function. Numerical Mathematics, 31, 377-403.
-
(1979)
Numerical Mathematics
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
7
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association, 81, 461-470.
-
(1986)
Journal of the American Statistical Association
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
8
-
-
4944239996
-
The estimation of prediction error: Covariance penalties and cross-validation
-
Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. Journal of the American Statistical Association, 99, 619-632.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 619-632
-
-
Efron, B.1
-
9
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1-67.
-
(1991)
Annals of Statistics
, vol.19
, pp. 1-67
-
-
Friedman, J.1
-
10
-
-
0042659381
-
Reoptimization with the primal-dual interior point method
-
Gondzio, J., & Grothey, A. (2001). Reoptimization with the primal-dual interior point method. SIAM, journal on Optimization, 13, 842-864.
-
(2001)
SIAM, journal on Optimization
, vol.13
, pp. 842-864
-
-
Gondzio, J.1
Grothey, A.2
-
11
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). The entire regularization path for the support vector machine. Journal of Machine. Learning Research, 5, 1391-1415.
-
(2004)
Journal of Machine. Learning Research
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
12
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
Hoerl, A., & Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(3), 55-67.
-
(1970)
Technometrics
, vol.12
, Issue.3
, pp. 55-67
-
-
Hoerl, A.1
Kennard, R.2
-
13
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, & A. Smola Eds, Cambridge, MA: MIT Press
-
Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 169-184). Cambridge, MA: MIT Press.
-
(1999)
Advances in kernel methods - Support vector learning
, pp. 169-184
-
-
Joachims, T.1
-
14
-
-
0004098720
-
Improvements to Plait's SMO algorithm for SVM classifier design
-
CD-99-14, Singapore: National University of Singapore
-
Keerthi, S., Shevade, S., Bhattacharyya, C., & Murthy, K. (1999). Improvements to Plait's SMO algorithm for SVM classifier design. (Tech. Rep. Mechanical and Production Engineering, CD-99-14). Singapore: National University of Singapore.
-
(1999)
Tech. Rep. Mechanical and Production Engineering
-
-
Keerthi, S.1
Shevade, S.2
Bhattacharyya, C.3
Murthy, K.4
-
16
-
-
0141765796
-
Accurate on-line support vector regression
-
Ma, J., Theiler, J., & Perkins, S. (2003). Accurate on-line support vector regression. Neural Computation, 15, 2683-2703.
-
(2003)
Neural Computation
, vol.15
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
-
17
-
-
0034237944
-
On the degrees of freedom in shape-restricted regression
-
Meyer, M., & Woodroofe, M. (2000). On the degrees of freedom in shape-restricted regression. Annals of Statistics, 28, 1083-1104.
-
(2000)
Annals of Statistics
, vol.28
, pp. 1083-1104
-
-
Meyer, M.1
Woodroofe, M.2
-
18
-
-
84956628443
-
Proceedings of the. Seventh International Conference on Artificial Neural Networks
-
pp. 999-1004, Berlin: Springer-Verlag
-
Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997). Predicting time series with support vector machines. In Proceedings of the. Seventh International Conference on Artificial Neural Networks (pp. 999-1004). Berlin: Springer-Verlag.
-
(1997)
Predicting time series with support vector machines
-
-
Müller, K.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
19
-
-
34249698328
-
-
O'Sullivan, F. (1985). Discussion of Some aspects of the spline smoothing approach to nonparametric curve fitting by B. W. Silverman. Journal of the. Royal Statistical Society, Series B, 36, 111-147.
-
O'Sullivan, F. (1985). Discussion of "Some aspects of the spline smoothing approach to nonparametric curve fitting" by B. W. Silverman. Journal of the. Royal Statistical Society, Series B, 36, 111-147.
-
-
-
-
20
-
-
0031334889
-
An improved training algorithm for support vector machines
-
Piscataway, NJ: IEEE Press
-
Osuna, E., Freund, R., & Girosi, F. (1997). An improved training algorithm for support vector machines. In Proceedings of the IEEE Neural Networks for Signal Processing VII Workshop (pp. 276-285). Piscataway, NJ: IEEE Press.
-
(1997)
Proceedings of the IEEE Neural Networks for Signal Processing VII Workshop
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
21
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, & A. Smola Eds, Cambridge, MA: MIT Press
-
Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - Support vector learning (pp. 185-208). Cambridge, MA: MIT Press.
-
(1999)
Advances in kernel methods - Support vector learning
, pp. 185-208
-
-
Platt, J.1
-
22
-
-
17444438778
-
New support vector algorithms
-
Schölkopf, B., Smola, A., Williamson, R., & Bartlett, P. (2000). New support vector algorithms. Neural Computation, 12, 1207-1245.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.3
Bartlett, P.4
-
23
-
-
33846917957
-
A temporal kernel-based model for tracking hand movements from neural activities
-
L. K. Saul, Y. Weiss, & L. Bottou Eds, Cambridge, MA: MIT Press
-
Shpigelman, L., Crammer, K., Paz, R., Vaadia, E., & Singer, Y. (2004). A temporal kernel-based model for tracking hand movements from neural activities. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
-
(2004)
Advances in neural information processing systems
, vol.17
-
-
Shpigelman, L.1
Crammer, K.2
Paz, R.3
Vaadia, E.4
Singer, Y.5
-
24
-
-
4043137356
-
-
Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199-222.1
-
Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199-222.1
-
-
-
-
25
-
-
0000169918
-
Estimation of the mean of a multivariate normal distribution
-
Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 9(6), 1135-1151.
-
(1981)
Annals of Statistics
, vol.9
, Issue.6
, pp. 1135-1151
-
-
Stein, C.1
-
26
-
-
0000629975
-
Cross-validation choice and assessment of statistical predictors (with discussion)
-
Stone, M. (1974). Cross-validation choice and assessment of statistical predictors (with discussion). Journal of the Royal Statistical Society Series B, 36, 111-147.
-
(1974)
Journal of the Royal Statistical Society Series B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
27
-
-
34249710422
-
-
Vanderbei, R. (1994). LOQO: An interior point code, for quadratic programming (Tech. Rep., Statistics and Operations Research SOR-94-15). Princeton, NJ: Princeton University.
-
Vanderbei, R. (1994). LOQO: An interior point code, for quadratic programming (Tech. Rep., Statistics and Operations Research SOR-94-15). Princeton, NJ: Princeton University.
-
-
-
-
29
-
-
0000448091
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. Mozer, M. Jordan, T. Petsche Eds, Cambridge, MA: MIT Press
-
Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
-
(1996)
Advances in neural information processing systems
, vol.9
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
31
-
-
0032351389
-
On measuring and correcting the effects of data mining and model selection
-
Ye, J. (1998). On measuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association, 93(441), 120-131.
-
(1998)
Journal of the American Statistical Association
, vol.93
, Issue.441
, pp. 120-131
-
-
Ye, J.1
-
32
-
-
33645581305
-
On the degrees of freedom of the lasso
-
Palo Alto, CA: Department of Statistics, Stanford University
-
Zou, H., Hastie, T., & Tibshirani, R. (2005). On the degrees of freedom of the lasso (Tech. Rep.). Palo Alto, CA: Department of Statistics, Stanford University.
-
(2005)
Tech. Rep
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|