메뉴 건너뛰기




Volumn 22, Issue 2, 2011, Pages 246-263

Logistic regression by means of evolutionary radial basis function neural networks

Author keywords

Artificial neural networks; classification; evolutionary algorithms; evolutionary programming; logistic regression; radial basis function neural networks

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; EVOLUTIONARY PROGRAMMING; LOGISTIC REGRESSION; RADIAL BASIS FUNCTION NEURAL NETWORKS;

EID: 79951675527     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2093537     Document Type: Article
Times cited : (67)

References (57)
  • 3
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • J. Friedman, "Multivariate adaptive regression splines (with discussion)," Ann. Stat., vol. 19, no. 1, pp. 1-141, 1991.
    • (1991) Ann. Stat. , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.1
  • 4
    • 33749267856 scopus 로고    scopus 로고
    • Logistic regression using covariates obtained by product-unit neural network models
    • DOI 10.1016/j.patcog.2006.06.003, PII S0031320306002755
    • C. Hervás-Martínez and F. Martínez-Estudillo, "Logistic regression using covariates obtained by product-unit neural network models," Pattern Recognit., vol. 40, no. 1, pp. 52-64, Jan. 2007. (Pubitemid 44486291)
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 52-64
    • Hervas-Martinez, C.1    Martinez-Estudillo, F.2
  • 5
    • 51049123604 scopus 로고    scopus 로고
    • Multilogistic regression by means of evolutionary product-unit neural networks
    • Sep.
    • C. Hervás-Martínez, F. J. Martínez-Estudillo, and M. Carbonero-Ruz, "Multilogistic regression by means of evolutionary product-unit neural networks," Neural Netw., vol. 21, no. 7, pp. 951-961, Sep. 2008.
    • (2008) Neural Netw. , vol.21 , Issue.7 , pp. 951-961
    • Hervás-Martínez, C.1    Martínez-Estudillo, F.J.2    Carbonero-Ruz, M.3
  • 6
    • 16544373696 scopus 로고    scopus 로고
    • Efficient training of RBF networks for classification
    • Jun.
    • I. T. Nabney, "Efficient training of RBF networks for classification," Int. J. Neural Syst., vol. 14, no. 3, pp. 201-208, Jun. 2004.
    • (2004) Int. J. Neural Syst. , vol.14 , Issue.3 , pp. 201-208
    • Nabney, I.T.1
  • 10
    • 85042234389 scopus 로고    scopus 로고
    • Optimising the widths of radial basis functions
    • Belo Horizonte, Brazil, Dec.
    • M. J. Orr, "Optimising the widths of radial basis functions," in Proc. 5th Brazilian Symp. Neural Netw., Belo Horizonte, Brazil, Dec. 1998, pp. 26-29.
    • (1998) Proc. 5th Brazilian Symp. Neural Netw. , pp. 26-29
    • Orr, M.J.1
  • 11
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis functions
    • Mar.
    • S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis functions," IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 12
    • 0026954775 scopus 로고
    • Neural networks for control systems - a survey
    • DOI 10.1016/0005-1098(92)90053-I
    • K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems-A survey," Automatica, vol. 28, no. 6, pp. 1083-1112, Nov. 1992. (Pubitemid 23587964)
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1112
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 13
    • 0033732354 scopus 로고    scopus 로고
    • Selecting radial basis function network centers with recursive orthogonal least squares training
    • Mar.
    • J. B. Gomm and D. L. Yu, "Selecting radial basis function network centers with recursive orthogonal least squares training," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 306-314, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.2 , pp. 306-314
    • Gomm, J.B.1    Yu, D.L.2
  • 14
    • 0242476985 scopus 로고    scopus 로고
    • Input-output clustering for determining centers of radial basis function network
    • Z. Uykan and C. Guzelis, "Input-output clustering for determining centers of radial basis function network," in Proc. Eur. Conf. Circuit Theory Design, vol. 2. 1997, pp. 435-439.
    • (1997) Proc. Eur. Conf. Circuit Theory Design , vol.2 , pp. 435-439
    • Uykan, Z.1    Guzelis, C.2
  • 15
    • 26844578765 scopus 로고    scopus 로고
    • Evolutionary optimization of radial basis function classifiers for data mining applications
    • DOI 10.1109/TSMCB.2005.847743
    • O. Buchtala, M. Klimek, and B. Sick, "Evolutionary optimization of radial basis function classifiers for data mining applications," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 35, no. 5, pp. 928-947, Oct. 2005. (Pubitemid 41444578)
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.35 , Issue.5 , pp. 928-947
    • Buchtala, O.1    Klimek, M.2    Sick, B.3
  • 17
    • 33846606846 scopus 로고    scopus 로고
    • A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability
    • Jul.
    • Z. Q. Zhao and D. S. Huang, "A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability," Appl. Math. Model., vol. 31, no. 7, pp. 1271-1281, Jul. 2007.
    • (2007) Appl. Math. Model. , vol.31 , Issue.7 , pp. 1271-1281
    • Zhao, Z.Q.1    Huang, D.S.2
  • 18
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • Sep.
    • S. Chen, Y. Wu, and B. L. Luk, "Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1239-1243, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 19
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • Nov.
    • J. González, I. Rojas, J. Ortega, H. Pomares, F. J. Fernández, and A. F. Días, "Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation," IEEE Trans. Neural Netw., vol. 14, no. 6, pp. 1478- 1495, Nov. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.6 , pp. 1478-1495
    • González, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernández, F.J.5    Días, A.F.6
  • 20
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • PII S1045922796028731
    • B. A. Whitehead and T. D. Choate, "Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction," IEEE Trans. Neural Netw., vol. 7, no. 4, pp. 869-880, Jul. 1996. (Pubitemid 126776360)
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1    Choate, T.D.2
  • 21
    • 0000156268 scopus 로고    scopus 로고
    • Genetic evolution of radial basis function coverage using orthogonal niches
    • PII S1045922796066155
    • B. A. Whitehead, "Genetic evolution of radial basis function coverage using orthogonal niches," IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1525-1528, Nov. 1996. (Pubitemid 126780494)
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1525-1528
    • Whitehead, B.A.1
  • 22
    • 0028208116 scopus 로고
    • Evolving space-filling curves to distribute radial basis functions over an input space
    • Jan.
    • B. A. Whitehead and T. D. Choate, "Evolving space-filling curves to distribute radial basis functions over an input space," IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 15-23, Jan. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.1 , pp. 15-23
    • Whitehead, B.A.1    Choate, T.D.2
  • 23
    • 84957717057 scopus 로고    scopus 로고
    • Introduction to scientific data mining: Direct kernel methods and applications
    • S. J. Ovaska, Ed. New York: Wiley , ch. 10
    • M. J. Embrechts, B. Szymanski, and M. Sternickel, "Introduction to scientific data mining: Direct kernel methods and applications," in Computationally Intelligent Hybrid Systems, S. J. Ovaska, Ed. New York: Wiley, 2004, ch. 10, pp. 317-362.
    • (2004) Computationally Intelligent Hybrid Systems , pp. 317-362
    • Embrechts, M.J.1    Szymanski, B.2    Sternickel, M.3
  • 27
    • 34249753618 scopus 로고
    • Support-vector networks
    • Sep.
    • C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, Sep. 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multiclass classification by pairwise coupling
    • T.-F. Wu, C.-J. Lin, and R. C. Weng, "Probability estimates for multiclass classification by pairwise coupling," J. Mach. Learn. Res., vol. 5, pp. 975-1005, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 29
    • 30044437592 scopus 로고    scopus 로고
    • A fast dual algorithm for kernel logistic regression
    • DOI 10.1007/s10994-005-0768-5
    • S. S. Keerthi, K. B. Duan, S. K. Shevade, and A. N. Poo, "A fast dual algorithm for kernel logistic regression," Mach. Learn., vol. 61, nos. 1-3, pp. 151-165, Nov. 2005. (Pubitemid 43049366)
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 151-165
    • Keerthi, S.S.1    Duan, K.B.2    Shevade, S.K.3    Poo, A.N.4
  • 30
    • 14344262126 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • Cambridge, MA: MIT Press
    • N. Lawrence, M. Seeger, and R. Herbrich, "Fast sparse Gaussian process methods: The informative vector machine," in Advances in Neural Information Processing Systems, vol. 15. Cambridge, MA: MIT Press, 2001, pp. 625-632.
    • (2001) Advances in Neural Information Processing Systems , vol.15 , pp. 625-632
    • Lawrence, N.1    Seeger, M.2    Herbrich, R.3
  • 31
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, Jun. 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 32
    • 67649380729 scopus 로고    scopus 로고
    • Probabilistic classification vector machines
    • Jun.
    • H. Chen, P. Tino, and X. Yao, "Probabilistic classification vector machines," IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 901-914, Jun. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.6 , pp. 901-914
    • Chen, H.1    Tino, P.2    Yao, X.3
  • 33
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • C.-W. Hsu and C.-J. Lin, "A comparison of methods for multi-class support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 34
    • 32144452542 scopus 로고    scopus 로고
    • Sequence features of DNA binding sites reveal structural class of associated transcription factor
    • DOI 10.1093/bioinformatics/bti731
    • L. Narlikar and A. J. Hartemink, "Sequence features of DNA binding sites reveal structural class of associated transcription factor," Bioinformatics, vol. 22, no. 2, pp. 157-163, Jan. 2006. (Pubitemid 43205401)
    • (2006) Bioinformatics , vol.22 , Issue.2 , pp. 157-163
    • Narlikar, L.1    Hartemink, A.J.2
  • 36
    • 77949784467 scopus 로고    scopus 로고
    • Sparse multiple kernel learning for signal processing applications
    • May
    • N. Subrahmanya and Y. Shin, "Sparse multiple kernel learning for signal processing applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 788-798, May 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 788-798
    • Subrahmanya, N.1    Shin, Y.2
  • 37
    • 13844266749 scopus 로고    scopus 로고
    • Data classification with radial basis function networks based on a novel kernel density estimation algorithm
    • DOI 10.1109/TNN.2004.836229
    • Y.-J. Oyang, S.-C. Hwang, Y.-Y. Ou, C.-Y. Chen, and Z.-W. Chen, "Data classification with radial basis function network based on a novel kernel density estimation algorithm," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 225-236, Jan. 2005. (Pubitemid 40241923)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 225-236
    • Oyang, Y.-J.1    Hwang, S.-C.2    Ou, Y.-Y.3    Chen, C.-Y.4    Chen, Z.-W.5
  • 39
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • S. le Cessie and J. van Houwelingen, "Ridge estimators in logistic regression," Appl. Stat., vol. 41, no. 1, pp. 191-201, 1992.
    • (1992) Appl. Stat. , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.2
  • 41
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Stat., vol. 38, no. 2, pp. 337-374, 2000.
    • (2000) Ann. Stat. , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 42
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • DOI 10.1007/s10994-005-0466-3
    • N. Landwehr, M. Hall, and E. Frank, "Logistic model trees," Mach. Learn., vol. 59, nos. 1-2, pp. 161-205, May 2005. (Pubitemid 40890416)
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 43
    • 0028202641 scopus 로고
    • An evolutionary algorithm that constructs recurrent neural networks
    • Jan.
    • P. J. Angeline, G. M. Sauders, and J. B. Pollack, "An evolutionary algorithm that constructs recurrent neural networks," IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 54-65, Jan. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.1 , pp. 54-65
    • Angeline, P.J.1    Sauders, G.M.2    Pollack, J.B.3
  • 48
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • May
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, no. 4598, pp. 671-680, May 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 52
    • 35748982409 scopus 로고    scopus 로고
    • JCLEC: A Java framework for evolutionary computation
    • DOI 10.1007/s00500-007-0172-0, Special issue (pp 315-357) "Ordered structures in many-valued logic"
    • S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervas, "JCLEC: A Java framework for evolutionary computation," Soft Comput., vol. 12, no. 4, pp. 381-392, Oct. 2008. (Pubitemid 350041999)
    • (2008) Soft Computing , vol.12 , Issue.4 , pp. 381-392
    • Ventura, S.1    Romero, C.2    Zafra, A.3    Delgado, J.A.4    Hervas, C.5
  • 54
    • 2342644217 scopus 로고    scopus 로고
    • Optimal classification methods for mapping agricultural tillage practices
    • DOI 10.1016/j.rse.2004.03.001, PII S0034425704000732
    • S. South, J. Qi, and D. P. Lusch, "Optimal classification methods for mapping agricultural tillage practices," Remote Sens. Environ., vol. 91, no. 1, pp. 90-97, May 2004. (Pubitemid 38583644)
    • (2004) Remote Sensing of Environment , vol.91 , Issue.1 , pp. 90-97
    • South, S.1    Qi, J.2    Lusch, D.P.3
  • 55
    • 33644914681 scopus 로고    scopus 로고
    • Spectral discrimination of Ridolfia segetum and sunflower as affected by phenological stage
    • DOI 10.1111/j.1365-3180.2006.00488.x
    • J. Peña-Barragán, F. Léopez-Granados, M. Jurado-Expéosito, and L. García-Torres, "Spectral discrimination of ridolfia segetum and sunflower as affected by phenological stage," Weed Res., vol. 46, no. 1, pp. 10-21, Feb. 2006. (Pubitemid 43382110)
    • (2006) Weed Research , vol.46 , Issue.1 , pp. 10-21
    • Pena-Barragan, J.M.1    Lopez-Granados, F.2    Jurado-Exposito, M.3    Garcia-Torres, L.4
  • 56
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 57
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Mar.
    • M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," Ann. Math. Stat., vol. 11, no. 1, pp. 86-92, Mar. 1940.
    • (1940) Ann. Math. Stat. , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.