-
1
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
2
-
-
33749246680
-
Training a support vector machine in the primal
-
no. 147, Tübingen: Max Planck Institute for Biological Cybernetics
-
Chapelle, O. (2006). Training a support vector machine in the primal. (MPI-Tech. Rep. no. 147). Tübingen: Max Planck Institute for Biological Cybernetics.
-
(2006)
MPI-Tech. Rep
-
-
Chapelle, O.1
-
4
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
Fan, R. E., Chen P. H., & Lin C. J. (2005). Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6, 1889-1918.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
5
-
-
0242288821
-
Finite Newton method for Lagrangian support vector machine classification
-
Fung, G., & Mangasarian, O. L. (2003). Finite Newton method for Lagrangian support vector machine classification. Neurocomputing, 55(1-2), 39-55.
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 39-55
-
-
Fung, G.1
Mangasarian, O.L.2
-
6
-
-
0021371266
-
Generalized Hessian matrix and second-order optimality conditions for problems with CL1 data
-
Hiriart-Urruty, J. B., Strodiot, J. J., & Nguyen V. H. (1984). Generalized Hessian matrix and second-order optimality conditions for problems with CL1 data. Applied Mathematics and Optimization, 11, 43-56.
-
(1984)
Applied Mathematics and Optimization
, vol.11
, pp. 43-56
-
-
Hiriart-Urruty, J.B.1
Strodiot, J.J.2
Nguyen, V.H.3
-
8
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, & A. J. Smola Eds, Cambridge, MA: MIT Press
-
Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning. Cambridge, MA: MIT Press.
-
(1999)
Advances in kernel methods - Support vector learning
-
-
Joachims, T.1
-
9
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
Keerthi, S. S., Chapelle, O., & DeCoste D. (2006). Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research, 7, 1493-1515.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
DeCoste, D.3
-
10
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMS
-
Keerthi, S. S., & DeCoste D. M. (2005). A modified finite Newton method for fast solution of large scale linear SVMS. Journal of Machine Learning Research, 6, 341-361.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 341-361
-
-
Keerthi, S.S.1
DeCoste, D.M.2
-
11
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13(3), 637-649.
-
(2001)
Neural Computation
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
12
-
-
0000406385
-
A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
-
Kimeldorf, G. S., & Wahba G. (1970). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41, 495-502.
-
(1970)
Annals of Mathematical Statistics
, vol.41
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
13
-
-
0000793765
-
Finite algorithms for robust linear-regression
-
Madsen, K., & Nielsen H. B. (1990). Finite algorithms for robust linear-regression. BIT, 30(4), 682-699.
-
(1990)
BIT
, vol.30
, Issue.4
, pp. 682-699
-
-
Madsen, K.1
Nielsen, H.B.2
-
14
-
-
0036817951
-
A finite Newton method for classification
-
Mangasarian, O. L. (2002). A finite Newton method for classification. Optimization Methods and Software, 17(5), 913-929.
-
(2002)
Optimization Methods and Software
, vol.17
, Issue.5
, pp. 913-929
-
-
Mangasarian, O.L.1
-
15
-
-
0003120218
-
Sequential minimal optimization: A fast algorithm for training support vector machines
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola Eds, Cambridge, MA: MIT Press
-
Platt, J. (1999). Sequential minimal optimization: A fast algorithm for training support vector machines. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods - Support vector learning. Cambridge, MA: MIT Press.
-
(1999)
Advances in kernel methods - Support vector learning
-
-
Platt, J.1
-
16
-
-
0004214436
-
-
Available online at
-
Rasmussen, C., Neal, R., Hinton G., van Camp D., Ghahramani Z., Kustra, R., & Tibshirani R. (1996). The DELVE manual. Available online at http://www.cs.toronto.edu/~delve.
-
(1996)
The DELVE manual
-
-
Rasmussen, C.1
Neal, R.2
Hinton, G.3
van Camp, D.4
Ghahramani, Z.5
Kustra, R.6
Tibshirani, R.7
-
17
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (2000). Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11(5), 1188-1193.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
18
-
-
4043137356
-
A tutorial on SVR
-
Smola, A. J., & Schölkopf, B. (2004). A tutorial on SVR. Statistics and Computing, 14(3), 199-222.
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
|