-
1
-
-
69849107380
-
The life and miracles of kinetochores
-
Santaguida S., Musacchio A. The life and miracles of kinetochores. EMBO J 2009, 28:2511-2531.
-
(2009)
EMBO J
, vol.28
, pp. 2511-2531
-
-
Santaguida, S.1
Musacchio, A.2
-
2
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 2008, 9:33-46.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
3
-
-
34548481620
-
Structures and functions of yeast kinetochore complexes
-
Westermann S., Drubin D.G., Barnes G. Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 2007, 76:563-591.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 563-591
-
-
Westermann, S.1
Drubin, D.G.2
Barnes, G.3
-
4
-
-
0023837441
-
Polewards chromosome movement driven by microtubule depolymerization in vitro
-
Koshland D.E., Mitchison T.J., Kirschner M.W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 1988, 331:499-504.
-
(1988)
Nature
, vol.331
, pp. 499-504
-
-
Koshland, D.E.1
Mitchison, T.J.2
Kirschner, M.W.3
-
5
-
-
77954056702
-
Contrasting models for kinetochore microtubule attachment in mammalian cells
-
McEwen B.F., Dong Y. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci 2010, 67:2163-2172.
-
(2010)
Cell Mol Life Sci
, vol.67
, pp. 2163-2172
-
-
McEwen, B.F.1
Dong, Y.2
-
6
-
-
34247333444
-
The spindle-assembly checkpoint in space and time
-
Musacchio A., Salmon E.D. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007, 8:379-393.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 379-393
-
-
Musacchio, A.1
Salmon, E.D.2
-
7
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman I.M., Chappie J.S., Wilson-Kubalek E.M., Desai A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
8
-
-
70449626289
-
Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint
-
Pagliuca C., Draviam V.M., Marco E., Sorger P.K., De Wulf P. Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint. PLoS One 2009, 4:e7640.
-
(2009)
PLoS One
, vol.4
-
-
Pagliuca, C.1
Draviam, V.M.2
Marco, E.3
Sorger, P.K.4
De Wulf, P.5
-
9
-
-
78649476255
-
Tension directly stabilizes reconstituted kinetochore-microtubule attachments
-
Akiyoshi B., Sarangapani K.K., Powers A.F., Nelson C.R., Reichow S.L., Arellano-Santoyo H., Gonen T., Ranish J.A., Asbury C.L., Biggins S. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 2010, 468:576-579.
-
(2010)
Nature
, vol.468
, pp. 576-579
-
-
Akiyoshi, B.1
Sarangapani, K.K.2
Powers, A.F.3
Nelson, C.R.4
Reichow, S.L.5
Arellano-Santoyo, H.6
Gonen, T.7
Ranish, J.A.8
Asbury, C.L.9
Biggins, S.10
-
10
-
-
77956378429
-
The MIS12 complex is a protein interaction hub for outer kinetochore assembly
-
Petrovic A., Pasqualato S., Dube P., Krenn V., Santaguida S., Cittaro D., Monzani S., Massimiliano L., Keller J., Tarricone A., et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 2010, 190:835-852.
-
(2010)
J Cell Biol
, vol.190
, pp. 835-852
-
-
Petrovic, A.1
Pasqualato, S.2
Dube, P.3
Krenn, V.4
Santaguida, S.5
Cittaro, D.6
Monzani, S.7
Massimiliano, L.8
Keller, J.9
Tarricone, A.10
-
11
-
-
77956361304
-
Molecular architecture and assembly of the yeast kinetochore MIND complex
-
Maskell D.P., Hu X.W., Singleton M.R. Molecular architecture and assembly of the yeast kinetochore MIND complex. J Cell Biol 2010, 190:823-834.
-
(2010)
J Cell Biol
, vol.190
, pp. 823-834
-
-
Maskell, D.P.1
Hu, X.W.2
Singleton, M.R.3
-
12
-
-
78650856481
-
Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex
-
Hornung P., Maier M., Alushin G.M., Lander G.C., Nogales E., Westermann S. Molecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex. J Mol Biol 2011, 405:548-559.
-
(2011)
J Mol Biol
, vol.405
, pp. 548-559
-
-
Hornung, P.1
Maier, M.2
Alushin, G.M.3
Lander, G.C.4
Nogales, E.5
Westermann, S.6
-
13
-
-
77949762923
-
Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase
-
Liu D., Vleugel M., Backer C.B., Hori T., Fukagawa T., Cheeseman I.M., Lampson M.A. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 2010, 188:809-820.
-
(2010)
J Cell Biol
, vol.188
, pp. 809-820
-
-
Liu, D.1
Vleugel, M.2
Backer, C.B.3
Hori, T.4
Fukagawa, T.5
Cheeseman, I.M.6
Lampson, M.A.7
-
14
-
-
35649019314
-
Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1
-
Kiyomitsu T., Obuse C., Yanagida M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell 2007, 13:663-676.
-
(2007)
Dev Cell
, vol.13
, pp. 663-676
-
-
Kiyomitsu, T.1
Obuse, C.2
Yanagida, M.3
-
15
-
-
79952269227
-
Protein interaction domain mapping of human kinetochore protein Blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1
-
Kiyomitsu T., Murakami H., Yanagida M. Protein interaction domain mapping of human kinetochore protein Blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1. Mol Cell Biol 2011, 31:998-1011.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 998-1011
-
-
Kiyomitsu, T.1
Murakami, H.2
Yanagida, M.3
-
16
-
-
67149128090
-
The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation
-
Trazzi S., Perini G., Bernardoni R., Zoli M., Reese J.C., Musacchio A., Della Valle G. The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation. PLoS One 2009, 4:e5832.
-
(2009)
PLoS One
, vol.4
-
-
Trazzi, S.1
Perini, G.2
Bernardoni, R.3
Zoli, M.4
Reese, J.C.5
Musacchio, A.6
Della Valle, G.7
-
17
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll C.W., Milks K.J., Straight A.F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 2010, 189:1143-1155.
-
(2010)
J Cell Biol
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
18
-
-
79952364478
-
Direct binding of cenp-C to the mis12 complex joins the inner and outer kinetochore
-
Screpanti E., De Antoni A., Alushin G.M., Petrovic A., Melis T., Nogales E., Musacchio A. Direct binding of cenp-C to the mis12 complex joins the inner and outer kinetochore. Curr Biol 2011, 21:391-398.
-
(2011)
Curr Biol
, vol.21
, pp. 391-398
-
-
Screpanti, E.1
De Antoni, A.2
Alushin, G.M.3
Petrovic, A.4
Melis, T.5
Nogales, E.6
Musacchio, A.7
-
19
-
-
79952360863
-
CENP-C is a structural platform for kinetochore assembly
-
Przewloka M.R., Venkei Z., Bolanos-Garcia V.M., Debski J., Dadlez M., Glover D.M. CENP-C is a structural platform for kinetochore assembly. Curr Biol 2011, 21:399-405.
-
(2011)
Curr Biol
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
Venkei, Z.2
Bolanos-Garcia, V.M.3
Debski, J.4
Dadlez, M.5
Glover, D.M.6
-
20
-
-
17244363408
-
Molecular organization of the Ndc80 complex, an essential kinetochore component
-
Wei R.R., Sorger P.K., Harrison S.C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A 2005, 102:5363-5367.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 5363-5367
-
-
Wei, R.R.1
Sorger, P.K.2
Harrison, S.C.3
-
21
-
-
23844460843
-
Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore
-
Ciferri C., De Luca J., Monzani S., Ferrari K.J., Ristic D., Wyman C., Stark H., Kilmartin J., Salmon E.D., Musacchio A. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J Biol Chem 2005, 280:29088-29095.
-
(2005)
J Biol Chem
, vol.280
, pp. 29088-29095
-
-
Ciferri, C.1
De Luca, J.2
Monzani, S.3
Ferrari, K.J.4
Ristic, D.5
Wyman, C.6
Stark, H.7
Kilmartin, J.8
Salmon, E.D.9
Musacchio, A.10
-
22
-
-
53149128681
-
Architecture and flexibility of the yeast Ndc80 kinetochore complex
-
Wang H.W., Long S., Ciferri C., Westermann S., Drubin D., Barnes G., Nogales E. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J Mol Biol 2008, 383:894-903.
-
(2008)
J Mol Biol
, vol.383
, pp. 894-903
-
-
Wang, H.W.1
Long, S.2
Ciferri, C.3
Westermann, S.4
Drubin, D.5
Barnes, G.6
Nogales, E.7
-
23
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
DeLuca J.G., Gall W.E., Ciferri C., Cimini D., Musacchio A., Salmon E.D. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 2006, 127:969-982.
-
(2006)
Cell
, vol.127
, pp. 969-982
-
-
DeLuca, J.G.1
Gall, W.E.2
Ciferri, C.3
Cimini, D.4
Musacchio, A.5
Salmon, E.D.6
-
24
-
-
33846100785
-
The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
-
Wei R.R., Al-Bassam J., Harrison S.C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 2007, 14:54-59.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 54-59
-
-
Wei, R.R.1
Al-Bassam, J.2
Harrison, S.C.3
-
25
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C., Pasqualato S., Screpanti E., Varetti G., Santaguida S., Dos Reis G., Maiolica A., Polka J., De Luca J.G., De Wulf P., et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008, 133:427-439.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
Pasqualato, S.2
Screpanti, E.3
Varetti, G.4
Santaguida, S.5
Dos Reis, G.6
Maiolica, A.7
Polka, J.8
De Luca, J.G.9
De Wulf, P.10
-
26
-
-
52249087768
-
Orientation and structure of the Ndc80 complex on the microtubule lattice
-
Wilson-Kubalek E.M., Cheeseman I.M., Yoshioka C., Desai A., Milligan R.A. Orientation and structure of the Ndc80 complex on the microtubule lattice. J Cell Biol 2008, 182:1055-1061.
-
(2008)
J Cell Biol
, vol.182
, pp. 1055-1061
-
-
Wilson-Kubalek, E.M.1
Cheeseman, I.M.2
Yoshioka, C.3
Desai, A.4
Milligan, R.A.5
-
27
-
-
77957968002
-
The Ndc80 kinetochore complex forms oligomeric arrays along microtubules
-
Alushin G.M., Ramey V.H., Pasqualato S., Ball D.A., Grigorieff N., Musacchio A., Nogales E. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 2010, 467:805-810.
-
(2010)
Nature
, vol.467
, pp. 805-810
-
-
Alushin, G.M.1
Ramey, V.H.2
Pasqualato, S.3
Ball, D.A.4
Grigorieff, N.5
Musacchio, A.6
Nogales, E.7
-
28
-
-
79954598474
-
The Ndc80 complex employs a tripartite attachment point to couple microtubule depolymerization to chromosome movement
-
Tooley J.G., Miller S.A., Stukenberg P.T. The Ndc80 complex employs a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol Biol Cell 2011, 22:1217-1226.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 1217-1226
-
-
Tooley, J.G.1
Miller, S.A.2
Stukenberg, P.T.3
-
29
-
-
79952848721
-
The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis
-
Sundin L.J., Guimaraes G.J., Deluca J.G. The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol Biol Cell 2011, 22:759-768.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 759-768
-
-
Sundin, L.J.1
Guimaraes, G.J.2
Deluca, J.G.3
-
30
-
-
56349098273
-
Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1)
-
Miller S.A., Johnson M.L., Stukenberg P.T. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol 2008, 18:1785-1791.
-
(2008)
Curr Biol
, vol.18
, pp. 1785-1791
-
-
Miller, S.A.1
Johnson, M.L.2
Stukenberg, P.T.3
-
31
-
-
0037131572
-
Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p
-
Cheeseman I.M., Anderson S., Jwa M., Green E.M., Kang J., Yates J.R., Chan C.S., Drubin D.G., Barnes G. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 2002, 111:163-172.
-
(2002)
Cell
, vol.111
, pp. 163-172
-
-
Cheeseman, I.M.1
Anderson, S.2
Jwa, M.3
Green, E.M.4
Kang, J.5
Yates, J.R.6
Chan, C.S.7
Drubin, D.G.8
Barnes, G.9
-
32
-
-
79951833036
-
Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis
-
DeLuca K.F., Lens S.M., DeLuca J.G. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J Cell Sci 2011, 124:622-634.
-
(2011)
J Cell Sci
, vol.124
, pp. 622-634
-
-
DeLuca, K.F.1
Lens, S.M.2
DeLuca, J.G.3
-
33
-
-
56349089656
-
Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
-
Guimaraes G.J., Dong Y., McEwen B.F., Deluca J.G. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 2008, 18:1778-1784.
-
(2008)
Curr Biol
, vol.18
, pp. 1778-1784
-
-
Guimaraes, G.J.1
Dong, Y.2
McEwen, B.F.3
Deluca, J.G.4
-
34
-
-
67349247484
-
Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling
-
Kemmler S., Stach M., Knapp M., Ortiz J., Pfannstiel J., Ruppert T., Lechner J. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J 2009, 28:1099-1110.
-
(2009)
EMBO J
, vol.28
, pp. 1099-1110
-
-
Kemmler, S.1
Stach, M.2
Knapp, M.3
Ortiz, J.4
Pfannstiel, J.5
Ruppert, T.6
Lechner, J.7
-
35
-
-
71549126528
-
Analysis of Ipl1-mediated phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae
-
Akiyoshi B., Nelson C.R., Ranish J.A., Biggins S. Analysis of Ipl1-mediated phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae. Genetics 2009, 183:1591-1595.
-
(2009)
Genetics
, vol.183
, pp. 1591-1595
-
-
Akiyoshi, B.1
Nelson, C.R.2
Ranish, J.A.3
Biggins, S.4
-
36
-
-
79551705112
-
Ndc80 internal loop interacts with Dis1/TOG to ensure proper kinetochore-spindle attachment in fission yeast
-
Hsu K.S., Toda T. Ndc80 internal loop interacts with Dis1/TOG to ensure proper kinetochore-spindle attachment in fission yeast. Curr Biol 2011, 21:214-220.
-
(2011)
Curr Biol
, vol.21
, pp. 214-220
-
-
Hsu, K.S.1
Toda, T.2
-
37
-
-
79551716041
-
The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end
-
Maure J.F., Komoto S., Oku Y., Mino A., Pasqualato S., Natsume K., Clayton L., Musacchio A., Tanaka T.U. The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr Biol 2011, 21:207-213.
-
(2011)
Curr Biol
, vol.21
, pp. 207-213
-
-
Maure, J.F.1
Komoto, S.2
Oku, Y.3
Mino, A.4
Pasqualato, S.5
Natsume, K.6
Clayton, L.7
Musacchio, A.8
Tanaka, T.U.9
-
38
-
-
77952377598
-
The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
-
Lampert F., Hornung P., Westermann S. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J Cell Biol 2010, 189:641-649.
-
(2010)
J Cell Biol
, vol.189
, pp. 641-649
-
-
Lampert, F.1
Hornung, P.2
Westermann, S.3
-
39
-
-
77952377597
-
Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B
-
Tien J.F., Umbreit N.T., Gestaut D.R., Franck A.D., Cooper J., Wordeman L., Gonen T., Asbury C.L., Davis T.N. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J Cell Biol 2010, 189:713-723.
-
(2010)
J Cell Biol
, vol.189
, pp. 713-723
-
-
Tien, J.F.1
Umbreit, N.T.2
Gestaut, D.R.3
Franck, A.D.4
Cooper, J.5
Wordeman, L.6
Gonen, T.7
Asbury, C.L.8
Davis, T.N.9
-
40
-
-
0032538984
-
Saccharomyces cerevisiae Duo1p and Dam1p, novel proteins involved in mitotic spindle function
-
Hofmann C., Cheeseman I.M., Goode B.L., McDonald K.L., Barnes G., Drubin D.G. Saccharomyces cerevisiae Duo1p and Dam1p, novel proteins involved in mitotic spindle function. J Cell Biol 1998, 143:1029-1040.
-
(1998)
J Cell Biol
, vol.143
, pp. 1029-1040
-
-
Hofmann, C.1
Cheeseman, I.M.2
Goode, B.L.3
McDonald, K.L.4
Barnes, G.5
Drubin, D.G.6
-
41
-
-
0032837198
-
Yeast Dam1p is required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase
-
Jones M.H., Bachant J.B., Castillo A.R., Giddings T.H., Winey M. Yeast Dam1p is required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase. Mol Biol Cell 1999, 10:2377-2391.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 2377-2391
-
-
Jones, M.H.1
Bachant, J.B.2
Castillo, A.R.3
Giddings, T.H.4
Winey, M.5
-
42
-
-
0035956434
-
Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP) related protein Sli15 during chromosome segregation
-
Kang J.-S., Cheeseman I.M., Kallstrom G., Velmurugan S., Barnes G., Chan C.S.M. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP) related protein Sli15 during chromosome segregation. J Cell Biol 2001, 155:763-774.
-
(2001)
J Cell Biol
, vol.155
, pp. 763-774
-
-
Kang, J.-S.1
Cheeseman, I.M.2
Kallstrom, G.3
Velmurugan, S.4
Barnes, G.5
Chan, C.S.M.6
-
43
-
-
0041467803
-
Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p
-
Shang C., Hazbun T.R., Cheeseman I.M., Aranda J., Fields S., Drubin D.G., Barnes G. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol Biol Cell 2003, 14:3342-3355.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 3342-3355
-
-
Shang, C.1
Hazbun, T.R.2
Cheeseman, I.M.3
Aranda, J.4
Fields, S.5
Drubin, D.G.6
Barnes, G.7
-
44
-
-
15444372660
-
The yeast DASH complex forms closed rings on microtubules
-
Miranda J.J., De Wulf P., Sorger P.K., Harrison S.C. The yeast DASH complex forms closed rings on microtubules. Nat Struct Mol Biol 2005, 12:138-143.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 138-143
-
-
Miranda, J.J.1
De Wulf, P.2
Sorger, P.K.3
Harrison, S.C.4
-
45
-
-
12344251956
-
Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex
-
Westermann S., Avila-Sakar A., Wang H.W., Niederstrasser H., Wong J., Drubin D.G., Nogales E., Barnes G. Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol Cell 2005, 17:277-290.
-
(2005)
Mol Cell
, vol.17
, pp. 277-290
-
-
Westermann, S.1
Avila-Sakar, A.2
Wang, H.W.3
Niederstrasser, H.4
Wong, J.5
Drubin, D.G.6
Nogales, E.7
Barnes, G.8
-
46
-
-
33644850985
-
The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends
-
Westermann S., Wang H.W., Avila-Sakar A., Drubin D.G., Nogales E., Barnes G. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 2006, 440:565-569.
-
(2006)
Nature
, vol.440
, pp. 565-569
-
-
Westermann, S.1
Wang, H.W.2
Avila-Sakar, A.3
Drubin, D.G.4
Nogales, E.5
Barnes, G.6
-
47
-
-
44349095959
-
Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms
-
Grishchuk E.L., Spiridonov I.S., Volkov V.A., Efremov A., Westermann S., Drubin D., Barnes G., Ataullakhanov F.I., McIntosh J.R. Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. Proc Natl Acad Sci U S A 2008, 105:6918-6923.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 6918-6923
-
-
Grishchuk, E.L.1
Spiridonov, I.S.2
Volkov, V.A.3
Efremov, A.4
Westermann, S.5
Drubin, D.6
Barnes, G.7
Ataullakhanov, F.I.8
McIntosh, J.R.9
-
48
-
-
33745603981
-
The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement
-
Asbury C.L., Gestaut D.R., Powers A.F., Franck A.D., Davis T.N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc Natl Acad Sci U S A 2006, 103:9873-9878.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 9873-9878
-
-
Asbury, C.L.1
Gestaut, D.R.2
Powers, A.F.3
Franck, A.D.4
Davis, T.N.5
-
49
-
-
34547661618
-
Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms
-
Wang H.W., Ramey V.H., Westermann S., Leschziner A.E., Welburn J.P., Nakajima Y., Drubin D.G., Barnes G., Nogales E. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nat Struct Mol Biol 2007, 14:721-726.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 721-726
-
-
Wang, H.W.1
Ramey, V.H.2
Westermann, S.3
Leschziner, A.E.4
Welburn, J.P.5
Nakajima, Y.6
Drubin, D.G.7
Barnes, G.8
Nogales, E.9
-
50
-
-
67649986028
-
Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries
-
Ramey V.H., Wang H.W., Nogales E. Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries. J Struct Biol 2009, 167:97-105.
-
(2009)
J Struct Biol
, vol.167
, pp. 97-105
-
-
Ramey, V.H.1
Wang, H.W.2
Nogales, E.3
-
51
-
-
79951826786
-
The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule
-
Ramey V.H., Wang H.W., Nakajima Y., Wong A., Liu J., Drubin D., Barnes G., Nogales E. The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule. Mol Biol Cell 2011, 22:457-466.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 457-466
-
-
Ramey, V.H.1
Wang, H.W.2
Nakajima, Y.3
Wong, A.4
Liu, J.5
Drubin, D.6
Barnes, G.7
Nogales, E.8
-
52
-
-
34347373760
-
Protein arms in the kinetochore-microtubule interface of the yeast DASH complex
-
Miranda J.J., King D.S., Harrison S.C. Protein arms in the kinetochore-microtubule interface of the yeast DASH complex. Mol Biol Cell 2007, 18:2503-2510.
-
(2007)
Mol Biol Cell
, vol.18
, pp. 2503-2510
-
-
Miranda, J.J.1
King, D.S.2
Harrison, S.C.3
-
53
-
-
65049088564
-
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy
-
Joglekar A.P., Bloom K., Salmon E.D. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 2009, 19:694-699.
-
(2009)
Curr Biol
, vol.19
, pp. 694-699
-
-
Joglekar, A.P.1
Bloom, K.2
Salmon, E.D.3
-
54
-
-
65549149069
-
Protein architecture of the human kinetochore microtubule attachment site
-
Wan X., O'Quinn R.P., Pierce H.L., Joglekar A.P., Gall W.E., DeLuca J.G., Carroll C.W., Liu S.T., Yen T.J., McEwen B.F., et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 2009, 137:672-684.
-
(2009)
Cell
, vol.137
, pp. 672-684
-
-
Wan, X.1
O'Quinn, R.P.2
Pierce, H.L.3
Joglekar, A.P.4
Gall, W.E.5
DeLuca, J.G.6
Carroll, C.W.7
Liu, S.T.8
Yen, T.J.9
McEwen, B.F.10
-
55
-
-
33744804567
-
Molecular architecture of a kinetochore-microtubule attachment site
-
Joglekar A.P., Bouck D.C., Molk J.N., Bloom K.S., Salmon E.D. Molecular architecture of a kinetochore-microtubule attachment site. Nat Cell Biol 2006, 8:581-585.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 581-585
-
-
Joglekar, A.P.1
Bouck, D.C.2
Molk, J.N.3
Bloom, K.S.4
Salmon, E.D.5
-
56
-
-
44149083326
-
Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
-
Joglekar A.P., Bouck D., Finley K., Liu X., Wan Y., Berman J., He X., Salmon E.D., Bloom K.S. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J Cell Biol 2008, 181:587-594.
-
(2008)
J Cell Biol
, vol.181
, pp. 587-594
-
-
Joglekar, A.P.1
Bouck, D.2
Finley, K.3
Liu, X.4
Wan, Y.5
Berman, J.6
He, X.7
Salmon, E.D.8
Bloom, K.S.9
-
57
-
-
77953574250
-
Vertebrate kinetochore protein architecture: protein copy number
-
Johnston K., Joglekar A., Hori T., Suzuki A., Fukagawa T., Salmon E.D. Vertebrate kinetochore protein architecture: protein copy number. J Cell Biol 2010, 189:937-943.
-
(2010)
J Cell Biol
, vol.189
, pp. 937-943
-
-
Johnston, K.1
Joglekar, A.2
Hori, T.3
Suzuki, A.4
Fukagawa, T.5
Salmon, E.D.6
-
58
-
-
77955636058
-
The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments
-
Corbett K.D., Yip C.K., Ee L.S., Walz T., Amon A., Harrison S.C. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 2010, 142:556-567.
-
(2010)
Cell
, vol.142
, pp. 556-567
-
-
Corbett, K.D.1
Yip, C.K.2
Ee, L.S.3
Walz, T.4
Amon, A.5
Harrison, S.C.6
-
59
-
-
77953574250
-
Vertebrate kinetochore protein architecture: protein copy number
-
Johnston K., Joglekar A., Hori T., Suzuki A., Fukagawa T., Salmon E.D. Vertebrate kinetochore protein architecture: protein copy number. J Cell Biol 2010, 189:937-943.
-
(2010)
J Cell Biol
, vol.189
, pp. 937-943
-
-
Johnston, K.1
Joglekar, A.2
Hori, T.3
Suzuki, A.4
Fukagawa, T.5
Salmon, E.D.6
-
60
-
-
79955497376
-
Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins
-
Suzuki A., Hori T., Nishino T., Usukura J., Miyagi A., Morikawa K., Fukagawa T. Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J Cell Biol 2011, 193:125-140.
-
(2011)
J Cell Biol
, vol.193
, pp. 125-140
-
-
Suzuki, A.1
Hori, T.2
Nishino, T.3
Usukura, J.4
Miyagi, A.5
Morikawa, K.6
Fukagawa, T.7
-
61
-
-
34247891773
-
The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions
-
Dong Y., Vanden Beldt K.J., Meng X., Khodjakov A., McEwen B.F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol 2007, 9:516-522.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 516-522
-
-
Dong, Y.1
Vanden Beldt, K.J.2
Meng, X.3
Khodjakov, A.4
McEwen, B.F.5
-
62
-
-
53549118867
-
Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion
-
McIntosh J.R., Grishchuk E.L., Morphew M.K., Efremov A.K., Zhudenkov K., Volkov V.A., Cheeseman I.M., Desai A., Mastronarde D.N., Ataullakhanov F.I. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 2008, 135:322-333.
-
(2008)
Cell
, vol.135
, pp. 322-333
-
-
McIntosh, J.R.1
Grishchuk, E.L.2
Morphew, M.K.3
Efremov, A.K.4
Zhudenkov, K.5
Volkov, V.A.6
Cheeseman, I.M.7
Desai, A.8
Mastronarde, D.N.9
Ataullakhanov, F.I.10
|