메뉴 건너뛰기




Volumn , Issue , 2007, Pages 243-259

The Use of Artificial Neural Networks for the Diagnosis and Estimation of Prognosis in Cancer Patients

Author keywords

Artificial neural networks; backpropagation neural networks; cancer diagnosis; cancer prognosis; data overfit; model validation; multivariate statistical methods; neuronal architecture; neurons; probabilistic neural networks

Indexed keywords


EID: 80051893844     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-044452855-1/50011-8     Document Type: Chapter
Times cited : (6)

References (88)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • H.A. Abbass (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif. Intell. Med. 25(3), 265-281.
    • (2002) Artif. Intell. Med. , vol.25 , Issue.3 , pp. 265-281
    • Abbass, H.A.1
  • 2
    • 0038024167 scopus 로고    scopus 로고
    • Artificial neural networks for decision-making in urologic oncology
    • T. Anagnostou, M. Remzi, M. Lykourinas and B. Djavan (2003) Artificial neural networks for decision-making in urologic oncology. Eur. Urol. 43(6), 596-603.
    • (2003) Eur. Urol. , vol.43 , Issue.6 , pp. 596-603
    • Anagnostou, T.1    Remzi, M.2    Lykourinas, M.3    Djavan, B.4
  • 3
    • 0035999397 scopus 로고    scopus 로고
    • Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images
    • M. Aoyama, Q. Li, S. Katsuragawa, H. MacMahon and K. Doi (2002) Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images. Med. Phys. 29(5), 701-708.
    • (2002) Med. Phys. , vol.29 , Issue.5 , pp. 701-708
    • Aoyama, M.1    Li, Q.2    Katsuragawa, S.3    MacMahon, H.4    Doi, K.5
  • 5
    • 0035677022 scopus 로고    scopus 로고
    • Computer-assisted diagnostics: application to prostate cancer
    • R.J. Babaian and Z. Zhang (2001) Computer-assisted diagnostics: application to prostate cancer. Mol. Urol. 5(4), 175-180.
    • (2001) Mol. Urol. , vol.5 , Issue.4 , pp. 175-180
    • Babaian, R.J.1    Zhang, Z.2
  • 6
    • 18344396961 scopus 로고    scopus 로고
    • An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers
    • G. Ball, S. Mian, F. Holding, R.O. Allibone, J. Lowe, S. Ali, G. Li, S. McCardle, I.O. Ellis, C. Creaser and R.C. Rees (2002) An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18(3), 395-404.
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 395-404
    • Ball, G.1    Mian, S.2    Holding, F.3    Allibone, R.O.4    Lowe, J.5    Ali, S.6    Li, G.7    McCardle, S.8    Ellis, I.O.9    Creaser, C.10    Rees, R.C.11
  • 7
    • 0035123210 scopus 로고    scopus 로고
    • Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer
    • J.T. Batuello, E.J. Gamito, E.D. Crawford, M. Han, A.W. Partin, D.G. McLeod and C. O'Donnell (2001) Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer. Urology 57(3), 481-485.
    • (2001) Urology , vol.57 , Issue.3 , pp. 481-485
    • Batuello, J.T.1    Gamito, E.J.2    Crawford, E.D.3    Han, M.4    Partin, A.W.5    McLeod, D.G.6    O'Donnell, C.7
  • 8
    • 0028299159 scopus 로고
    • Computer-assisted image classification: use of neural networks in anatomic pathology
    • R.L. Becker (1994) Computer-assisted image classification: use of neural networks in anatomic pathology. Cancer Lett. 77(2–3), 111-117.
    • (1994) Cancer Lett. , vol.77 , Issue.2-3 , pp. 111-117
    • Becker, R.L.1
  • 9
    • 0344193099 scopus 로고    scopus 로고
    • Neural networks as a prognostic tool for patients with non-small-cell carcinoma of the lung
    • M. Bellotti, B. Elsner, L.A. Paez De, H. Esteva and A.M. Marchevsky (1997) Neural networks as a prognostic tool for patients with non-small-cell carcinoma of the lung. Mod. Pathol. 10(12), 1221-1227.
    • (1997) Mod. Pathol. , vol.10 , Issue.12 , pp. 1221-1227
    • Bellotti, M.1    Elsner, B.2    Paez De, L.A.3    Esteva, H.4    Marchevsky, A.M.5
  • 10
    • 0032926288 scopus 로고    scopus 로고
    • Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US
    • R. Biagiotti, C. Desii, E. Vanzi and G. Gacci (1999) Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US. Radiology 210(2), 399-403.
    • (1999) Radiology , vol.210 , Issue.2 , pp. 399-403
    • Biagiotti, R.1    Desii, C.2    Vanzi, E.3    Gacci, G.4
  • 11
    • 0142216643 scopus 로고    scopus 로고
    • Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors 2772
    • E. Biganzoli, P. Boracchi, D. Coradini, D.M. Grazia and E. Marubini (2003) Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors 2772. Ann. Oncol. 14(10), 1484-1493.
    • (2003) Ann. Oncol. , vol.14 , Issue.10 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Grazia, D.M.4    Marubini, E.5
  • 13
    • 0028282629 scopus 로고
    • Application of an arti-ficial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study
    • M. Binder, A. Steiner, M. Schwarz, S. Knollmayer, K. Wolff and H. Pehamberger (1994) Application of an arti-ficial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study. Br. J. Dermatol. 130(4), 460-465.
    • (1994) Br. J. Dermatol. , vol.130 , Issue.4 , pp. 460-465
    • Binder, M.1    Steiner, A.2    Schwarz, M.3    Knollmayer, S.4    Wolff, K.5    Pehamberger, H.6
  • 15
    • 16844374019 scopus 로고    scopus 로고
    • Artificial neural network for prediction of lymph node metastases in gastric cancer: a phase II diagnostic study
    • E.H. Bollschweiler, S.P. Monig, K. Hensler, S.E. Baldus, K. Maruyama and A.H. Holscher (2004) Artificial neural network for prediction of lymph node metastases in gastric cancer: a phase II diagnostic study. Ann. Surg. Oncol. 11(5), 506-511.
    • (2004) Ann. Surg. Oncol. , vol.11 , Issue.5 , pp. 506-511
    • Bollschweiler, E.H.1    Monig, S.P.2    Hensler, K.3    Baldus, S.E.4    Maruyama, K.5    Holscher, A.H.6
  • 16
    • 0035977415 scopus 로고    scopus 로고
    • Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients
    • P. Boracchi, E. Biganzoli and E. Marubini (2001) Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients. Stat. Med. 20(24), 3677-3694.
    • (2001) Stat. Med. , vol.20 , Issue.24 , pp. 3677-3694
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 17
    • 0035871302 scopus 로고    scopus 로고
    • Prediction of individual patient outcome in cancer: comparison of artificial neural networks and Kaplan-Meier methods
    • D.G. Bostwick and H.B. Burke (2001) Prediction of individual patient outcome in cancer: comparison of artificial neural networks and Kaplan-Meier methods. Cancer 91(Suppl 8), 1643-1646.
    • (2001) Cancer , vol.91 , pp. 1643-1646
    • Bostwick, D.G.1    Burke, H.B.2
  • 19
    • 0028044828 scopus 로고
    • Artificial neural networks for cancer research: outcome prediction
    • H.B. Burke (1994) Artificial neural networks for cancer research: outcome prediction. Semin. Surg. Oncol. 10(1), 73-79.
    • (1994) Semin. Surg. Oncol. , vol.10 , Issue.1 , pp. 73-79
    • Burke, H.B.1
  • 21
    • 85030306819 scopus 로고    scopus 로고
    • Artificial neural networks
    • M. Buyse and P. Piedbois (1997) Artificial neural networks. Lancet 350(9085), 1175-1176.
    • (1997) Lancet , vol.350 , Issue.9085 , pp. 1175-1176
    • Buyse, M.1    Piedbois, P.2
  • 22
    • 0141790049 scopus 로고    scopus 로고
    • Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks
    • J.W. Catto, D.A. Linkens, M.F. Abbod, M. Chen, J.L. Burton, K.M. Feeley and F.C. Hamdy (2003) Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks. Clin. Cancer Res. 9(11), 4172-4177.
    • (2003) Clin. Cancer Res. , vol.9 , Issue.11 , pp. 4172-4177
    • Catto, J.W.1    Linkens, D.A.2    Abbod, M.F.3    Chen, M.4    Burton, J.L.5    Feeley, K.M.6    Hamdy, F.C.7
  • 23
    • 11144233952 scopus 로고    scopus 로고
    • Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from popu-lation
    • Y.D. Chen, S. Zheng, J.K. Yu and X. Hu (2004) Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from popu-lation. Clin. Cancer Res. 10(24), 8380-8385.
    • (2004) Clin. Cancer Res. , vol.10 , Issue.24 , pp. 8380-8385
    • Chen, Y.D.1    Zheng, S.2    Yu, J.K.3    Hu, X.4
  • 24
    • 1442264195 scopus 로고    scopus 로고
    • Neural networks for computer-aided diagno-sis: detection of lung nodules in chest radiograms
    • G. Coppini, S. Diciotti, M. Falchini, N. Villari and G. Valli (2003) Neural networks for computer-aided diagno-sis: detection of lung nodules in chest radiograms. IEEE Trans. Inf. Technol. Biomed. 7(4), 344-357.
    • (2003) IEEE Trans. Inf. Technol. Biomed. , vol.7 , Issue.4 , pp. 344-357
    • Coppini, G.1    Diciotti, S.2    Falchini, M.3    Villari, N.4    Valli, G.5
  • 25
    • 0347628810 scopus 로고    scopus 로고
    • Use of algorithms as determinants for individual patient decision making: national comprehensive cancer network versus artificial neural networks
    • E.D. Crawford (2003) Use of algorithms as determinants for individual patient decision making: national comprehensive cancer network versus artificial neural networks. Urology 62(6 Suppl 1), 13-19.
    • (2003) Urology , vol.62 , Issue.6 , pp. 13-19
    • Crawford, E.D.1
  • 26
    • 0037301401 scopus 로고    scopus 로고
    • Predicting survival with artificial neural networks
    • R. Danesi and A.D. Paolo (2003) Predicting survival with artificial neural networks. Clin. Colorectal Cancer 2(4), 245.
    • (2003) Clin. Colorectal Cancer , vol.2 , Issue.4 , pp. 245
    • Danesi, R.1    Paolo, A.D.2
  • 28
    • 0037083655 scopus 로고    scopus 로고
    • Novel artificial neural network for early detection of prostate cancer
    • B. Djavan, M. Remzi, A. Zlotta, C. Seitz, P. Snow and M. Marberger (2002) Novel artificial neural network for early detection of prostate cancer. J. Clin. Oncol. 20(4), 921-929.
    • (2002) J. Clin. Oncol. , vol.20 , Issue.4 , pp. 921-929
    • Djavan, B.1    Remzi, M.2    Zlotta, A.3    Seitz, C.4    Snow, P.5    Marberger, M.6
  • 29
    • 0031933449 scopus 로고    scopus 로고
    • Applications of neural networks in urologic oncology
    • T.H. Douglas and J.W. Moul (1998) Applications of neural networks in urologic oncology. Semin. Urol. Oncol. 16(1), 35-39.
    • (1998) Semin. Urol. Oncol. , vol.16 , Issue.1 , pp. 35-39
    • Douglas, T.H.1    Moul, J.W.2
  • 32
    • 0346887208 scopus 로고    scopus 로고
    • Detection of basal cell carcinoma using electrical impedance and neural networks
    • R. Dua, D.G. Beetner, W.V. Stoecker and D.C. Wunsch (2004) Detection of basal cell carcinoma using electrical impedance and neural networks. IEEE Trans. Biomed. Eng. 51(1), 66-71.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.1 , pp. 66-71
    • Dua, R.1    Beetner, D.G.2    Stoecker, W.V.3    Wunsch, D.C.4
  • 36
    • 18544399463 scopus 로고    scopus 로고
    • Evolving artificial neural networks for screening features from mammograms
    • D.B. Fogel, E.C. Wasson III, E.M. Boughton and V.W. Porto (1998) Evolving artificial neural networks for screening features from mammograms. Artif. Intell. Med. 14(3), 317-326.
    • (1998) Artif. Intell. Med. , vol.14 , Issue.3 , pp. 317-326
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3    Porto, V.W.4
  • 38
    • 0348112535 scopus 로고    scopus 로고
    • Predicting disease outcome of non-invasive transitional cell carcinoma of the urinary bladder using an artificial neural network model: results of patient fol for 15 years or longer
    • K. Fujikawa, Y. Matsui, T. Kobayashi, K. Miura, H. Oka, S. Fukuzawa, M. Sasaki, H. Takeuchi and T. Okabe (2003) Predicting disease outcome of non-invasive transitional cell carcinoma of the urinary bladder using an artificial neural network model: results of patient fol for 15 years or longer. Int. J. Urol. 10(3), 149-152.
    • (2003) Int. J. Urol. , vol.10 , Issue.3 , pp. 149-152
    • Fujikawa, K.1    Matsui, Y.2    Kobayashi, T.3    Miura, K.4    Oka, H.5    Fukuzawa, S.6    Sasaki, M.7    Takeuchi, H.8    Okabe, T.9
  • 39
    • 5444243432 scopus 로고    scopus 로고
    • Artificial neural networks for predictive modeling in prostate cancer
    • E.J. Gamito and E.D. Crawford (2004) Artificial neural networks for predictive modeling in prostate cancer. Curr. Oncol. Rep. 6(3), 216-221.
    • (2004) Curr. Oncol. Rep. , vol.6 , Issue.3 , pp. 216-221
    • Gamito, E.J.1    Crawford, E.D.2
  • 41
    • 0034069985 scopus 로고    scopus 로고
    • Artificial neural networks: a new model for assessing prognostic factors
    • S.A. Grumett and P.B. Snow (2000) Artificial neural networks: a new model for assessing prognostic factors. Ann. Oncol. 11(4), 383-384.
    • (2000) Ann. Oncol. , vol.11 , Issue.4 , pp. 383-384
    • Grumett, S.A.1    Snow, P.B.2
  • 42
    • 1842527859 scopus 로고    scopus 로고
    • Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate
    • S.L. Gulliford, S. Webb, C.G. Rowbottom, D.W. Corne and D.P. Dearnaley (2004) Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate. Radiother. Oncol. 71(1), 3-12.
    • (2004) Radiother. Oncol. , vol.71 , Issue.1 , pp. 3-12
    • Gulliford, S.L.1    Webb, S.2    Rowbottom, C.G.3    Corne, D.W.4    Dearnaley, D.P.5
  • 43
    • 7944219823 scopus 로고    scopus 로고
    • Automatic detection of clustered microcalcifications in digital mammograms
    • S. Halkiotis and J. Mantas (2002) Automatic detection of clustered microcalcifications in digital mammograms. Stud. Health Technol. Inform. 90 24-29.
    • (2002) Stud. Health Technol. Inform. , vol.90 , pp. 24-29
    • Halkiotis, S.1    Mantas, J.2
  • 44
    • 0035871398 scopus 로고    scopus 로고
    • Evaluation of artificial neural networks for the prediction of pathologic stage in prostate carcinoma
    • M. Han, P.B. Snow, J.M. Brandt and A.W. Partin (2001) Evaluation of artificial neural networks for the prediction of pathologic stage in prostate carcinoma. Cancer 91(Suppl 8), 1661-1666.
    • (2001) Cancer , vol.91 , pp. 1661-1666
    • Han, M.1    Snow, P.B.2    Brandt, J.M.3    Partin, A.W.4
  • 45
    • 0038081320 scopus 로고    scopus 로고
    • Prognostic models in patients with non-small-cell lung cancer using artificial neural networks in comparison with logistic regression
    • T. Hanai, Y. Yatabe, Y. Nakayama, T. Takahashi, H. Honda, T. Mitsudomi and T. Kobayashi (2003) Prognostic models in patients with non-small-cell lung cancer using artificial neural networks in comparison with logistic regression. Cancer Sci. 94(5), 473-477.
    • (2003) Cancer Sci. , vol.94 , Issue.5 , pp. 473-477
    • Hanai, T.1    Yatabe, Y.2    Nakayama, Y.3    Takahashi, T.4    Honda, H.5    Mitsudomi, T.6    Kobayashi, T.7
  • 46
    • 0347589503 scopus 로고    scopus 로고
    • Prediction of survival in surgical unresectable lung cancer by artificial neural networks including genetic polymorphisms and clinical parameters
    • T.C. Hsia, H.C. Chiang, D. Chiang, L.W. Hang, F.J. Tsai and W.C. Chen (2003) Prediction of survival in surgical unresectable lung cancer by artificial neural networks including genetic polymorphisms and clinical parameters. J. Clin. Lab Anal. 17(6), 229-234.
    • (2003) J. Clin. Lab Anal. , vol.17 , Issue.6 , pp. 229-234
    • Hsia, T.C.1    Chiang, H.C.2    Chiang, D.3    Hang, L.W.4    Tsai, F.J.5    Chen, W.C.6
  • 48
    • 5444263006 scopus 로고    scopus 로고
    • Evidence-based medicine, medical decision analysis, and pathology
    • A.M. Marchevsky and M.R. Wick (2004) Evidence-based medicine, medical decision analysis, and pathology. Hum. Pathol. 35(10), 1179-1188.
    • (2004) Hum. Pathol. , vol.35 , Issue.10 , pp. 1179-1188
    • Marchevsky, A.M.1    Wick, M.R.2
  • 49
    • 0031813690 scopus 로고    scopus 로고
    • Artificial neural networks and logistic regression as tools for prediction of survival in patients with stages I and II non-small-cell lung cancer
    • A.M. Marchevsky, S. Patel, K.J. Wiley, M.A. Stephenson, M. Gondo, R.W. Brown, E.S. Yi, W.F. Benedict, R.C. Anton and P.T. Cagle (1998) Artificial neural networks and logistic regression as tools for prediction of survival in patients with stages I and II non-small-cell lung cancer. Mod. Pathol. 11(7), 618-625.
    • (1998) Mod. Pathol. , vol.11 , Issue.7 , pp. 618-625
    • Marchevsky, A.M.1    Patel, S.2    Wiley, K.J.3    Stephenson, M.A.4    Gondo, M.5    Brown, R.W.6    Yi, E.S.7    Benedict, W.F.8    Anton, R.C.9    Cagle, P.T.10
  • 50
    • 0032924219 scopus 로고    scopus 로고
    • Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer pati
    • A.M. Marchevsky, S. Shah and S. Patel (1999) Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer pati. Mod. Pathol. 12(5), 505-513.
    • (1999) Mod. Pathol. , vol.12 , Issue.5 , pp. 505-513
    • Marchevsky, A.M.1    Shah, S.2    Patel, S.3
  • 51
    • 1142263111 scopus 로고    scopus 로고
    • Classification of individual lung cancer cell lines based on DNA methylation markers: use of linear discriminant analysis and artificial neural networks
    • A.M. Marchevsky, J.A. Tsou and I.A. Laird-Offringa (2004) Classification of individual lung cancer cell lines based on DNA methylation markers: use of linear discriminant analysis and artificial neural networks. J. Mol. Diagn. 6(1), 28-36.
    • (2004) J. Mol. Diagn. , vol.6 , Issue.1 , pp. 28-36
    • Marchevsky, A.M.1    Tsou, J.A.2    Laird-Offringa, I.A.3
  • 52
    • 0034912542 scopus 로고    scopus 로고
    • Prediction of postoperative prostatic cancer stage on the basis of systematic biopsies using two types of artificial neural networks
    • T. Mattfeldt, H.A. Kestler, R. Hautmann and H.W. Gottfried (2001) Prediction of postoperative prostatic cancer stage on the basis of systematic biopsies using two types of artificial neural networks. Eur. Urol. 39(5), 530-536.
    • (2001) Eur. Urol. , vol.39 , Issue.5 , pp. 530-536
    • Mattfeldt, T.1    Kestler, H.A.2    Hautmann, R.3    Gottfried, H.W.4
  • 53
    • 0035663028 scopus 로고    scopus 로고
    • Cluster analysis of compara-tive genomic hybridization (CGH) data using self-organizing maps: application to prostate carcinomas
    • T. Mattfeldt, H. Wolter, R. Kemmerling, H.W. Gottfried and H.A. Kestler (2001) Cluster analysis of compara-tive genomic hybridization (CGH) data using self-organizing maps: application to prostate carcinomas. Anal. Cell Pathol. 23(1), 29-37.
    • (2001) Anal. Cell Pathol. , vol.23 , Issue.1 , pp. 29-37
    • Mattfeldt, T.1    Wolter, H.2    Kemmerling, R.3    Gottfried, H.W.4    Kestler, H.A.5
  • 54
    • 0035871332 scopus 로고    scopus 로고
    • Artificial neural networks for prostate carcinoma risk assessment
    • J.E. Montie and J.T. Wei (2001) Artificial neural networks for prostate carcinoma risk assessment. An overview. Cancer 91(Suppl 8), 1647-1652.
    • (2001) An overview. Cancer , vol.91 , pp. 1647-1652
    • Montie, J.E.1    Wei, J.T.2
  • 55
    • 0033987088 scopus 로고    scopus 로고
    • Use of artificial neural networks in evaluating prognostic factors determining the response to dendritic cells pulsed with PSMA peptides in prostate cancer pa
    • G.P. Murphy, P. Snow, S.J. Simmons, B.A. Tjoa, M.K. Rogers, J. Brandt, C.G. Healy, W.E. Bolton and D. Rodbold (2000) Use of artificial neural networks in evaluating prognostic factors determining the response to dendritic cells pulsed with PSMA peptides in prostate cancer pa. Prostate 42(1), 67-72.
    • (2000) Prostate , vol.42 , Issue.1 , pp. 67-72
    • Murphy, G.P.1    Snow, P.2    Simmons, S.J.3    Tjoa, B.A.4    Rogers, M.K.5    Brandt, J.6    Healy, C.G.7    Bolton, W.E.8    Rodbold, D.9
  • 57
    • 0030756045 scopus 로고    scopus 로고
    • Artificial neural networks in cancer research
    • R.N. Naguib and G.V. Sherbet (1997) Artificial neural networks in cancer research. Pathobiology 65(3), 129-139.
    • (1997) Pathobiology , vol.65 , Issue.3 , pp. 129-139
    • Naguib, R.N.1    Sherbet, G.V.2
  • 59
    • 0031866151 scopus 로고    scopus 로고
    • Neural network analysis of combined conven-tional and experimental prognostic markers in prostate cancer: a pilot study
    • R.N. Naguib, M.C. Robinson, D.E. Neal and F.C. Hamdy (1998) Neural network analysis of combined conven-tional and experimental prognostic markers in prostate cancer: a pilot study. Br. J. Cancer 78(2), 246-250.
    • (1998) Br. J. Cancer , vol.78 , Issue.2 , pp. 246-250
    • Naguib, R.N.1    Robinson, M.C.2    Neal, D.E.3    Hamdy, F.C.4
  • 60
    • 0033084166 scopus 로고    scopus 로고
    • DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their progno
    • R.N. Naguib, H.A. Sakim, M.S. Lakshmi, V. Wadehra, T.W. Lennard, J. Bhatavdekar and G.V. Sherbet (1999) DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their progno. IEEE Trans. Inf. Technol. Biomed. 3(1), 61-69.
    • (1999) IEEE Trans. Inf. Technol. Biomed. , vol.3 , Issue.1 , pp. 61-69
    • Naguib, R.N.1    Sakim, H.A.2    Lakshmi, M.S.3    Wadehra, V.4    Lennard, T.W.5    Bhatavdekar, J.6    Sherbet, G.V.7
  • 61
    • 0034009298 scopus 로고    scopus 로고
    • Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artifi-cial neural networks
    • K. Nakamura, H. Yoshida, R. Engelmann, H. MacMahon, S. Katsuragawa, T. Ishida, K. Ashizawa and K. Doi (2000) Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artifi-cial neural networks. Radiology 214(3), 823-830.
    • (2000) Radiology , vol.214 , Issue.3 , pp. 823-830
    • Nakamura, K.1    Yoshida, H.2    Engelmann, R.3    MacMahon, H.4    Katsuragawa, S.5    Ishida, T.6    Ashizawa, K.7    Doi, K.8
  • 62
    • 2442685760 scopus 로고    scopus 로고
    • Artificial intelligence techniques for bioinformatics
    • A. Narayanan, E.C. Keedwell and B. Olsson (2002) Artificial intelligence techniques for bioinformatics. Appl. Bioinformatics 1(4), 191-222.
    • (2002) Appl. Bioinformatics , vol.1 , Issue.4 , pp. 191-222
    • Narayanan, A.1    Keedwell, E.C.2    Olsson, B.3
  • 63
    • 0036660906 scopus 로고    scopus 로고
    • Computerized detection of breast cancer with artifi-cial intelligence and thermograms
    • E.Y. Ng, S.C. Fok, Y.C. Peh, F.C. Ng and L.S. Sim (2002) Computerized detection of breast cancer with artifi-cial intelligence and thermograms. J. Med. Eng Technol. 26(4), 152-157.
    • (2002) J. Med. Eng Technol. , vol.26 , Issue.4 , pp. 152-157
    • Ng, E.Y.1    Fok, S.C.2    Peh, Y.C.3    Ng, F.C.4    Sim, L.S.5
  • 64
    • 0036808137 scopus 로고    scopus 로고
    • Survival prediction using artificial neural networks in patients with uterine cervical cancer treated by radiation therapy alone
    • T. Ochi, K. Murase, T. Fujii, M. Kawamura and J. Ikezoe (2002) Survival prediction using artificial neural networks in patients with uterine cervical cancer treated by radiation therapy alone. Int. J. Clin. Oncol. 7(5), 294-300.
    • (2002) Int. J. Clin. Oncol. , vol.7 , Issue.5 , pp. 294-300
    • Ochi, T.1    Murase, K.2    Fujii, T.3    Kawamura, M.4    Ikezoe, J.5
  • 65
    • 0142192759 scopus 로고    scopus 로고
    • Neural network analysis of lymphoma microarray data: prognosis and diagno-sis near-perfect
    • M.C. O'Neill and L. Song (2003) Neural network analysis of lymphoma microarray data: prognosis and diagno-sis near-perfect. BMC Bioinformatics 4(1), 13.
    • (2003) BMC Bioinformatics , vol.4 , Issue.1 , pp. 13
    • O'Neill, M.C.1    Song, L.2
  • 66
    • 1542673203 scopus 로고    scopus 로고
    • Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer
    • C.R. Porter and E.D. Crawford (2003) Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer. Oncology (Huntingt) 17(10), 1395-1399.
    • (2003) Oncology (Huntingt) , vol.17 , Issue.10 , pp. 1395-1399
    • Porter, C.R.1    Crawford, E.D.2
  • 67
    • 0037338017 scopus 로고    scopus 로고
    • Microarray-based cancer diagnosis with artificial neural networks
    • M. Ringner and C. Peterson (2003) Microarray-based cancer diagnosis with artificial neural networks. Biotechniques 34(Suppl 3), 30-35.
    • (2003) Biotechniques , vol.34 , pp. 30-35
    • Ringner, M.1    Peterson, C.2
  • 68
    • 0028210335 scopus 로고
    • Artificial neural networks for early detection and diagnosis of cancer
    • S.K. Rogers, D.W. Ruck and M. Kabrisky (1994) Artificial neural networks for early detection and diagnosis of cancer. Cancer Lett. 77(2–3), 79-83.
    • (1994) Cancer Lett. , vol.77 , Issue.2-3 , pp. 79-83
    • Rogers, S.K.1    Ruck, D.W.2    Kabrisky, M.3
  • 70
    • 0033052780 scopus 로고    scopus 로고
    • Use of artificial neural networks in modeling associations of discriminant factors: towards an intelligent selective breast cancer screening
    • A.L. Ronco (1999) Use of artificial neural networks in modeling associations of discriminant factors: towards an intelligent selective breast cancer screening. Artif. Intell. Med. 16(3), 299-309.
    • (1999) Artif. Intell. Med. , vol.16 , Issue.3 , pp. 299-309
    • Ronco, A.L.1
  • 71
    • 0003584577 scopus 로고
    • Artificial Intelligence
    • Upple Saddle Valley, New Jersey: Prentice Hall
    • S. Russell and P. Norvig (1995) Artificial Intelligence. A Modern Approach Upple Saddle Valley, New Jersey: Prentice Hall
    • (1995) A Modern Approach
    • Russell, S.1    Norvig, P.2
  • 72
    • 0035871395 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with other statistical approaches: results from medical data sets
    • D.J. Sargent (2001) Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 91(Suppl 8), 1636-1642.
    • (2001) Cancer , vol.91 , pp. 1636-1642
    • Sargent, D.J.1
  • 73
    • 0348225433 scopus 로고    scopus 로고
    • How to assess prognostic models for survival data: a case study in oncology
    • M. Schumacher, E. Graf and T. Gerds (2003) How to assess prognostic models for survival data: a case study in oncology. Methods Inf. Med. 42(5), 564-571.
    • (2003) Methods Inf. Med. , vol.42 , Issue.5 , pp. 564-571
    • Schumacher, M.1    Graf, E.2    Gerds, T.3
  • 74
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • G. Schwarzer, W. Vach and M. Schumacher (2000) On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat. Med. 19(4), 541-561.
    • (2000) Stat. Med. , vol.19 , Issue.4 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 75
    • 0036254780 scopus 로고    scopus 로고
    • Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: statistical, neural network and fuzzy approaches
    • H. Seker, M.O. Odetayo, D. Petrovic, R.N. Naguib, C. Bartoli, L. Alasio, M.S. Lakshmi and G.V. Sherbet (2002) Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: statistical, neural network and fuzzy approaches. Anticancer Res. 22(1A), 433-438.
    • (2002) Anticancer Res. , vol.22 , Issue.1A , pp. 433-438
    • Seker, H.1    Odetayo, M.O.2    Petrovic, D.3    Naguib, R.N.4    Bartoli, C.5    Alasio, L.6    Lakshmi, M.S.7    Sherbet, G.V.8
  • 77
    • 0032920749 scopus 로고    scopus 로고
    • Estimation of tumor stage and lymph node status in patients with colorectal adenocarcinoma using probabilistic neural networks and logistic regression
    • R.P. Singson, R. Alsabeh, S.A. Geller and A. Marchevsky (1999) Estimation of tumor stage and lymph node status in patients with colorectal adenocarcinoma using probabilistic neural networks and logistic regression. Mod. Pathol. 12(5), 479-484.
    • (1999) Mod. Pathol. , vol.12 , Issue.5 , pp. 479-484
    • Singson, R.P.1    Alsabeh, R.2    Geller, S.A.3    Marchevsky, A.4
  • 78
    • 0032701729 scopus 로고    scopus 로고
    • Artificial neural networks in clinical urology
    • P.B. Snow, D.M. Rodvold and J.M. Brandt (1999) Artificial neural networks in clinical urology. Urology 54(5), 787-790.
    • (1999) Urology , vol.54 , Issue.5 , pp. 787-790
    • Snow, P.B.1    Rodvold, D.M.2    Brandt, J.M.3
  • 79
    • 0035871573 scopus 로고    scopus 로고
    • Neural network and regression predictions of 5-year survival after colon carcinoma treatment
    • P.B. Snow, D.J. Kerr, J.M. Brandt and D.M. Rodvold (2001) Neural network and regression predictions of 5-year survival after colon carcinoma treatment. Cancer 91(Suppl 8), 1673-1678.
    • (2001) Cancer , vol.91 , pp. 1673-1678
    • Snow, P.B.1    Kerr, D.J.2    Brandt, J.M.3    Rodvold, D.M.4
  • 80
    • 3242777061 scopus 로고    scopus 로고
    • Application of artificial neural networks to the analysis of dynamic MR imaging features of the breast
    • B.K. Szabo, M.K. Wiberg, B. Bone and P. Aspelin (2004) Application of artificial neural networks to the analysis of dynamic MR imaging features of the breast. Eur. Radiol. 14(7), 1217-1225.
    • (2004) Eur. Radiol. , vol.14 , Issue.7 , pp. 1217-1225
    • Szabo, B.K.1    Wiberg, M.K.2    Bone, B.3    Aspelin, P.4
  • 81
    • 0347724097 scopus 로고    scopus 로고
    • Modelling survival after treatment of intraocular melanoma using artificial neural networks and Bayes theorem
    • A.F. Taktak, A.C. Fisher and B.E. Damato (2004) Modelling survival after treatment of intraocular melanoma using artificial neural networks and Bayes theorem. Phys. Med. Biol. 49(1), 87-98.
    • (2004) Phys. Med. Biol. , vol.49 , Issue.1 , pp. 87-98
    • Taktak, A.F.1    Fisher, A.C.2    Damato, B.E.3
  • 82
    • 0035006815 scopus 로고    scopus 로고
    • A neural network approach to breast cancer diagnosis as a constraint satisfaction problem
    • G.D. Tourassi, M.K. Markey, J.Y. Lo and C.E. Floyd Jr. (2001) A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Med. Phys. 28(5), 804-811.
    • (2001) Med. Phys. , vol.28 , Issue.5 , pp. 804-811
    • Tourassi, G.D.1    Markey, M.K.2    Lo, J.Y.3    Floyd, C.E.4
  • 84
    • 0032146619 scopus 로고    scopus 로고
    • Understanding artificial neural networks and exploring their potential applications for the practicing urologist
    • J.T. Wei, Z. Zhang, S.D. Barnhill, K.R. Madyastha, H. Zhang and J.E. Oesterling (1998) Understanding artificial neural networks and exploring their potential applications for the practicing urologist. Urology 52(2), 161-172.
    • (1998) Urology , vol.52 , Issue.2 , pp. 161-172
    • Wei, J.T.1    Zhang, Z.2    Barnhill, S.D.3    Madyastha, K.R.4    Zhang, H.5    Oesterling, J.E.6
  • 85
    • 0029299090 scopus 로고
    • Detection of lung nodules in digital chest radiographs using artificial neural networks: a pilot study
    • Y.C. Wu, K. Doi and M.L. Giger (1995) Detection of lung nodules in digital chest radiographs using artificial neural networks: a pilot study. J. Digit Imaging 8(2), 88-94.
    • (1995) J. Digit Imaging , vol.8 , Issue.2 , pp. 88-94
    • Wu, Y.C.1    Doi, K.2    Giger, M.L.3
  • 86
    • 0037111146 scopus 로고    scopus 로고
    • Artificial neural network classification based on high-performance liquid chromatography of urinary and serum nucleosides for the clinical diagnosis of cancer
    • J. Yang, G. Xu, H. Kong, Y. Zheng, T. Pang and Q. Yang (2002) Artificial neural network classification based on high-performance liquid chromatography of urinary and serum nucleosides for the clinical diagnosis of cancer. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 780(1), 27-33.
    • (2002) J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. , vol.780 , Issue.1 , pp. 27-33
    • Yang, J.1    Xu, G.2    Kong, H.3    Zheng, Y.4    Pang, T.5    Yang, Q.6
  • 87
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Z.H. Zhou, Y. Jiang, Y.B. Yang and S.F. Chen (2002) Lung cancer cell identification based on artificial neural network ensembles. Artif. Intell. Med. 24(1), 25-36.
    • (2002) Artif. Intell. Med. , vol.24 , Issue.1 , pp. 25-36
    • Zhou, Z.H.1    Jiang, Y.2    Yang, Y.B.3    Chen, S.F.4
  • 88
    • 0037405578 scopus 로고    scopus 로고
    • An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng./ml
    • A.R. Zlotta, M. Remzi, P.B. Snow, C.C. Schulman, M. Marberger and B. Djavan (2003) An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng./ml. or less. J. Urol. 169(5), 1724-1728.
    • (2003) or less. J. Urol. , vol.169 , Issue.5 , pp. 1724-1728
    • Zlotta, A.R.1    Remzi, M.2    Snow, P.B.3    Schulman, C.C.4    Marberger, M.5    Djavan, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.