메뉴 건너뛰기




Volumn 71, Issue 1, 2004, Pages 3-12

Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate

Author keywords

Artificial neural networks; Normal tissue complication probability; Prostate; Radiotherapy; Tumour control probability

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BLADDER DISEASE; CANCER CONTROL; CANCER PATIENT; CANCER RADIOTHERAPY; CONTROLLED STUDY; CORRELATION ANALYSIS; DATA ANALYSIS; DOSE CALCULATION; HISTOGRAM; HUMAN; MAJOR CLINICAL STUDY; MALE; MODEL; OUTCOMES RESEARCH; PARAMETER; PREDICTION; PRESCRIPTION; PRIORITY JOURNAL; PROBABILITY; PROSTATE CANCER; RADIATION DOSE; RADIATION DOSE DISTRIBUTION; RADIOBIOLOGY; RECTUM DISEASE; RETROSPECTIVE STUDY; SENSITIVITY AND SPECIFICITY; TISSUE; TREATMENT OUTCOME; TREATMENT PLANNING;

EID: 1842527859     PISSN: 01678140     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.radonc.2003.03.001     Document Type: Article
Times cited : (88)

References (22)
  • 2
    • 0030743761 scopus 로고    scopus 로고
    • Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
    • Bottaci L., Drew P.J., Hartley J.E., et al. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet. 350:1997;469-472.
    • (1997) Lancet , vol.350 , pp. 469-472
    • Bottaci, L.1    Drew, P.J.2    Hartley, J.E.3
  • 3
    • 0035424796 scopus 로고    scopus 로고
    • Incorporating biologic measurements (SF(2), CFE) into a tumor control probability model increases their prognostic significance: A study in cervical carcinoma treated with radiation therapy
    • Buffa F.M., Davidson S.E., Hunter R.D., et al. Incorporating biologic measurements (SF(2), CFE) into a tumor control probability model increases their prognostic significance: a study in cervical carcinoma treated with radiation therapy. Int J Radiat Oncol Biol Phys. 50:2001;1113-1122.
    • (2001) Int J Radiat Oncol Biol Phys , vol.50 , pp. 1113-1122
    • Buffa, F.M.1    Davidson, S.E.2    Hunter, R.D.3
  • 4
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • Burke H.B., Goodman P.H., Rosen D.B., et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer. 79:1997;857-862.
    • (1997) Cancer , vol.79 , pp. 857-862
    • Burke, H.B.1    Goodman, P.H.2    Rosen, D.B.3
  • 5
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • Dayhoff J.E., DeLeo J.M. Artificial neural networks: opening the black box. Cancer. 91:2001;1615-1635.
    • (2001) Cancer , vol.91 , pp. 1615-1635
    • Dayhoff, J.E.1    Deleo, J.M.2
  • 6
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • De Laurentiis M., Ravdin P.M. A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett. 77:1994;127-138.
    • (1994) Cancer Lett , vol.77 , pp. 127-138
    • De Laurentiis, M.1    Ravdin, P.M.2
  • 7
    • 1842600534 scopus 로고    scopus 로고
    • Phase III trial of dose escalation using conformal radiotherapy in prostate cancer: Side effects and PSA control
    • Dearnaley D., Hall E., Jackson C., et al. Phase III trial of dose escalation using conformal radiotherapy in prostate cancer: side effects and PSA control. Br J Cancer. 85:2002;15.
    • (2002) Br J Cancer , vol.85 , pp. 15
    • Dearnaley, D.1    Hall, E.2    Jackson, C.3
  • 8
    • 0029218166 scopus 로고
    • Flow of information through an artificial neural network
    • Guimaraes P.R.B., McGreavy C. Flow of information through an artificial neural network. Comput Chem Engng. 19:1995;741-746.
    • (1995) Comput Chem Engng , vol.19 , pp. 741-746
    • Guimaraes, P.R.B.1    McGreavy, C.2
  • 9
    • 0004063090 scopus 로고    scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • Haykin S. Neural networks. 1999;Prentice-Hall, Englewood Cliffs, NJ.
    • (1999) Neural Networks
    • Haykin, S.1
  • 11
    • 1842496021 scopus 로고    scopus 로고
    • Quantitative treatment plan evaluation
    • F.M. Kahn, & R.A. Potish. Baltimore, MD: Williams & Wilkins
    • Kutcher G.J., Jackson A. Quantitative treatment plan evaluation. Kahn F.M., Potish R.A. Treatment planning in radiation oncology. 2002;Williams & Wilkins, Baltimore, MD.
    • (2002) Treatment Planning in Radiation Oncology
    • Kutcher, G.J.1    Jackson, A.2
  • 12
    • 0023123835 scopus 로고
    • Optimization of radiation therapy, III: A method of assessing complication probabilities from dose-volume histograms
    • Lyman J.T., Wolbarst A.B. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys. 13:1987;103-109.
    • (1987) Int J Radiat Oncol Biol Phys , vol.13 , pp. 103-109
    • Lyman, J.T.1    Wolbarst, A.B.2
  • 13
    • 0025112578 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity. 1943 [classical article]
    • McCulloch W.S., Pitts W. A logical calculus of the ideas imminent in nervous activity. 1943 [classical article]. Bull Math Biol. 52:1943;99-115.
    • (1943) Bull Math Biol , vol.52 , pp. 99-115
    • McCulloch, W.S.1    Pitts, W.2
  • 14
    • 0032859274 scopus 로고    scopus 로고
    • A neural network to predict symptomatic lung injury
    • Munley M.T., Lo J.Y., Sibley G.S., et al. A neural network to predict symptomatic lung injury. Phys Med Biol. 44:1999;2241-2249.
    • (1999) Phys Med Biol , vol.44 , pp. 2241-2249
    • Munley, M.T.1    Lo, J.Y.2    Sibley, G.S.3
  • 16
    • 0027136115 scopus 로고
    • Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor
    • Niemierko A., Goitein M. Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor. Radiother Oncol. 29:1993;140-147.
    • (1993) Radiother Oncol , vol.29 , pp. 140-147
    • Niemierko, A.1    Goitein, M.2
  • 17
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome of individual breast cancer patients
    • Ravdin P.M., Clark G.M. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat. 22:1992;285-293.
    • (1992) Breast Cancer Res Treat , vol.22 , pp. 285-293
    • Ravdin, P.M.1    Clark, G.M.2
  • 18
    • 0028964397 scopus 로고
    • RTOG late effects working group. Overview. Late effects of normal tissues (LENT) scoring system
    • Rubin P., Constine L.S., Fajardo L.F., et al. RTOG late effects working group. Overview. Late effects of normal tissues (LENT) scoring system. Int J Radiat Oncol Biol Phys. 31:1995;1041-1042.
    • (1995) Int J Radiat Oncol Biol Phys , vol.31 , pp. 1041-1042
    • Rubin, P.1    Constine, L.S.2    Fajardo, L.F.3
  • 19
    • 0029076576 scopus 로고
    • EORTC Late Effects Working Group. Overview of late effects normal tissues (LENT) scoring system
    • Rubin P., Constine L.S. III, Fajardo L.F., et al. EORTC Late Effects Working Group. Overview of late effects normal tissues (LENT) scoring system. Radiother Oncol. 35:1995;9-10.
    • (1995) Radiother Oncol , vol.35 , pp. 9-10
    • Rubin, P.1    Constine III, L.S.2    Fajardo, L.F.3
  • 21
    • 0034176902 scopus 로고    scopus 로고
    • Late rectal toxicity after conformal radiotherapy of prostate cancer (I): Multivariate analysis and dose-response
    • Skwarchuk M.W., Jackson A., Zelefsky M.J., et al. Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose-response. Int J Radiat Oncol Biol Phys. 47:2000;103-113.
    • (2000) Int J Radiat Oncol Biol Phys , vol.47 , pp. 103-113
    • Skwarchuk, M.W.1    Jackson, A.2    Zelefsky, M.J.3
  • 22
    • 0027223126 scopus 로고
    • A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density
    • Webb S., Nahum A.E. A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol. 38:1993;653-666.
    • (1993) Phys Med Biol , vol.38 , pp. 653-666
    • Webb, S.1    Nahum, A.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.