메뉴 건너뛰기




Volumn 6, Issue 3, 2004, Pages 216-221

Artificial neural networks for predictive modeling in prostate cancer

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; HUMAN; LEARNING; MALE; METHODOLOGY; PREDICTION; PROSTATE CANCER; REVIEW; STATISTICAL MODEL; THEORETICAL STUDY;

EID: 5444243432     PISSN: 15233790     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11912-004-0052-z     Document Type: Review
Times cited : (10)

References (38)
  • 1
    • 0028801975 scopus 로고
    • A prospective evaluation of plasma prostate-specific antigen for detection of prostate cancer
    • Gann PH, Hennekens CH, Stampler MJ: A prospective evaluation of plasma prostate-specific antigen for detection of prostate cancer. JAMA 1995, 273:289-294.
    • (1995) JAMA , vol.273 , pp. 289-294
    • Gann, P.H.1    Hennekens, C.H.2    Stampler, M.J.3
  • 3
    • 0027939198 scopus 로고
    • The nature of prostate cancer detected through prostate specific antigen based screening
    • Smith DS, Catalona WJ: The nature of prostate cancer detected through prostate specific antigen based screening. J Urol 1994, 152:1732-1736.
    • (1994) J. Urol. , vol.152 , pp. 1732-1736
    • Smith, D.S.1    Catalona, W.J.2
  • 4
    • 0030913315 scopus 로고    scopus 로고
    • Combination of prostate-specific antigen, clinical stage and Gleason sum to predict pathological stage of localized prostate cancer: A multi-institutional update
    • Partin AW, Kattan MW, Subing ENP, et al.: Combination of prostate-specific antigen, clinical stage and Gleason sum to predict pathological stage of localized prostate cancer: a multi-institutional update. JAMA 1997, 277:1445-1451.
    • (1997) JAMA , vol.277 , pp. 1445-1451
    • Partin, A.W.1    Kattan, M.W.2    Subing, E.N.P.3
  • 5
    • 0032550753 scopus 로고    scopus 로고
    • A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer
    • Kattan MW, Eastham JA, Stapleton AMF, et al.: A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998, 90:766-771.
    • (1998) J. Natl. Cancer Inst. , vol.90 , pp. 766-771
    • Kattan, M.W.1    Eastham, J.A.2    Stapleton, A.M.F.3
  • 6
    • 0032950295 scopus 로고    scopus 로고
    • A postoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer
    • Kattan MW, Wheeler TM, Scardino PT: A postoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Clin Oncol 1999, 17:1499-1507.
    • (1999) J. Clin. Oncol. , vol.17 , pp. 1499-1507
    • Kattan, M.W.1    Wheeler, T.M.2    Scardino, P.T.3
  • 7
    • 0033253474 scopus 로고    scopus 로고
    • Artificial neural networks in urology: Pro
    • Wei JT, Tewari A: Artificial neural networks in urology: Pro. Urology 1999, 54:945-948.
    • (1999) Urology , vol.54 , pp. 945-948
    • Wei, J.T.1    Tewari, A.2
  • 8
    • 0033252230 scopus 로고    scopus 로고
    • Artificial neural networks in urology: Con
    • Krongrad A, Lai S: Artificial neural networks in urology: Con. Urology 1999, 54:949-951.
    • (1999) Urology , vol.54 , pp. 949-951
    • Krongrad, A.1    Lai, S.2
  • 9
    • 0003529238 scopus 로고
    • Beyond regression: New tools for prediction and analysis in the behavioral sciences
    • PhD thesis, Harvard University
    • Werbos PJ: Beyond regression: new tools for prediction and analysis in the behavioral sciences. In PhD thesis, Harvard University; 1974.
    • (1974)
    • Werbos, P.J.1
  • 11
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • Dayhoff JE, DeLeo JM: Artificial neural networks: opening the black box. Cancer 2001, 91(Suppl 8):1615-1635.
    • (2001) Cancer , vol.91 , Issue.SUPPL. 8 , pp. 1615-1635
    • Dayhoff, J.E.1    DeLeo, J.M.2
  • 13
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 14
    • 0020524559 scopus 로고
    • A method of comparing the areas under the receiver operating characteristic curves derived from the same cases
    • Hanley JA, McNeil NJ: A method of comparing the areas under the receiver operating characteristic curves derived from the same cases. Radiology 1983, 148:839-843.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, N.J.2
  • 15
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
    • Chen T, Chen H: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. Neural Networks 1995, 6: 11-917.
    • (1995) Neural Networks , vol.6 , pp. 911-917
    • Chen, T.1    Chen, H.2
  • 16
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, Stinchcomb, White: Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2: 59-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, A.1    Stinchcomb, A.2    White, A.3
  • 17
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • Park J, Sandberg IW: Universal approximation using radial-basis function networks. Neural Comput 1993, 3: 46-257.
    • (1993) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 18
    • 0000246504 scopus 로고
    • Rule induction through integrated symbolic and subsymbolic processing
    • Edited by Moody JE, Hanson SJ, Lippman RP. San Mateo, CA: Kaufmann
    • McMillan C, Mozer MC, Smolensky P: Rule induction through integrated symbolic and subsymbolic processing. In Advances in Neural Information Processing Systems. Edited by Moody JE, Hanson SJ, Lippman RP. San Mateo, CA: Kaufmann; 1991:969.
    • (1991) Advances in Neural Information Processing Systems , pp. 969
    • McMillan, C.1    Mozer, M.C.2    Smolensky, P.3
  • 19
    • 0032931822 scopus 로고    scopus 로고
    • Template-based procedures for neural network interpretation
    • Alexander JA, Mozer MC: Template-based procedures for neural network interpretation. Neural Networks 1999, 12: 79-498.
    • (1999) Neural Networks , vol.12 , pp. 479-498
    • Alexander, J.A.1    Mozer, M.C.2
  • 20
    • 0003189388 scopus 로고
    • Interpretation of artificial neural networks: Mapping knowledge-based neural networks into rules
    • Edited by Moody JE, Hanson SJ, Lippman RP. San Mateo, CA: Kaufmann
    • Towell G, Shavlik JW: Interpretation of artificial neural networks: mapping knowledge-based neural networks into rules. In Advances in Neural Information Processing Systems. Edited by Moody JE, Hanson SJ, Lippman RP. San Mateo, CA: Kaufmann; 1991:977.
    • (1991) Advances in Neural Information Processing Systems , pp. 977
    • Towell, G.1    Shavlik, J.W.2
  • 21
    • 0028148549 scopus 로고
    • Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study
    • Snow PB, Smith DS, Catalona WJ: Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J Urol 1994, 152:1923-1926.
    • (1994) J. Urol. , vol.152 , pp. 1923-1926
    • Snow, P.B.1    Smith, D.S.2    Catalona, W.J.3
  • 22
    • 0001733113 scopus 로고    scopus 로고
    • Prostate cancer diagnosis from artificial neural networks using the Prostate Cancer Awareness Week (PCAW) database
    • Snow P, Crawford ED, DeAntoni EP, et al.: Prostate cancer diagnosis from artificial neural networks using the Prostate Cancer Awareness Week (PCAW) database. J Urol 1997, 157 (Suppl):365.
    • (1997) J. Urol. , vol.157 , Issue.SUPPL. , pp. 365
    • Snow, P.1    Crawford, E.D.2    DeAntoni, E.P.3
  • 23
    • 18244432236 scopus 로고    scopus 로고
    • Predicting the outcome of prostate biopsy in screen-positive men by multilayer perceptron network
    • Finne P, Finne R, Auvinen A, et al.: Predicting the outcome of prostate biopsy in screen-positive men by multilayer perceptron network. Urology 2000, 56:418-422.
    • (2000) Urology , vol.56 , pp. 418-422
    • Finne, P.1    Finne, R.2    Auvinen, A.3
  • 24
    • 5444247532 scopus 로고    scopus 로고
    • Predicting prostate biopsy outcome: A robust model validated with data from three independent institutions
    • Presented at 14th International Prostate Cancer Update [abstract]. Vail, CO, February
    • Gamito EJ, Porter CR, Crawford CR, et al.: Predicting prostate biopsy outcome: a robust model validated with data from three independent institutions [abstract]. Presented at 14th International Prostate Cancer Update, Vail, CO, February 2004.
    • (2004)
    • Gamito, E.J.1    Porter, C.R.2    Crawford, C.R.3
  • 25
    • 0042734859 scopus 로고    scopus 로고
    • An artificial neural network to predict the outcome of repeat prostate biopsies
    • Remzi M, Anagnostou T, Ravery V, et al.: An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 2003, 62:456-460.
    • (2003) Urology , vol.62 , pp. 456-460
    • Remzi, M.1    Anagnostou, T.2    Ravery, V.3
  • 26
    • 0032324086 scopus 로고    scopus 로고
    • Novel staging tool for localized prostate cancer: A pilot study using genetic adaptive neural networks
    • Tewari A, Narayan P: Novel staging tool for localized prostate cancer: a pilot study using genetic adaptive neural networks. J Urol 1998, 160:430-436.
    • (1998) J. Urol. , vol.160 , pp. 430-436
    • Tewari, A.1    Narayan, P.2
  • 27
    • 0035123210 scopus 로고    scopus 로고
    • Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer
    • Batuello JT, Gamito EJ, Crawford ED, et al.: Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer. Urology 2001, 57:481-485.
    • (2001) Urology , vol.57 , pp. 481-485
    • Batuello, J.T.1    Gamito, E.J.2    Crawford, E.D.3
  • 28
    • 0007693764 scopus 로고    scopus 로고
    • Artificial neural network model to predict risk of non-organ-confined disease and risk of lymph node spread in men with clinically localized prostate cancer
    • Crawford ED, Gamito EJ, O'Donnell C, et al.: Artificial neural network model to predict risk of non-organ-confined disease and risk of lymph node spread in men with clinically localized prostate cancer. J Urol 2001, 165(Suppl):233.
    • (2001) J. Urol. , vol.165 , Issue.SUPPL. , pp. 233
    • Crawford, E.D.1    Gamito, E.J.2    O'Donnell, C.3
  • 29
    • 0037405578 scopus 로고    scopus 로고
    • An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng/mL or less
    • Zlotta AR, Remzi M, Snow PB, et al.: An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng/mL or less. J Urol 2003, 169:1724-1728.
    • (2003) J. Urol. , vol.169 , pp. 1724-1728
    • Zlotta, A.R.1    Remzi, M.2    Snow, P.B.3
  • 30
    • 0032727778 scopus 로고    scopus 로고
    • Genetically engineered neural networks for predicting prostate cancer progression after radical prostatectomy
    • Potter SR, Miller MC, Mangold LA, et al.: Genetically engineered neural networks for predicting prostate cancer progression after radical prostatectomy. Urology 1999, 54: 91-795.
    • (1999) Urology , vol.54 , pp. 791-795
    • Potter, S.R.1    Miller, M.C.2    Mangold, L.A.3
  • 31
    • 0033663884 scopus 로고    scopus 로고
    • A neural network predicts progression for men with Gleason score 3+4 versus 4+3 tumors after radical prostatectomy
    • Han M, Snow PB, Epstein JI, et al.: A neural network predicts progression for men with Gleason score 3+4 versus 4+3 tumors after radical prostatectomy. Urology 2000, 56:994-999.
    • (2000) Urology , vol.56 , pp. 994-999
    • Han, M.1    Snow, P.B.2    Epstein, J.I.3
  • 32
    • 0035674244 scopus 로고    scopus 로고
    • Genetic adaptive neural network model to predict biochemical failure following radical prostatectomy: A multi-institutional study
    • Tewari A, Issa M, El-Galley P, et al.: Genetic adaptive neural network model to predict biochemical failure following radical prostatectomy: a multi-institutional study. Mol Urol 2002, 5:163-170.
    • (2002) Mol. Urol. , vol.5 , pp. 163-170
    • Tewari, A.1    Issa, M.2    El-Galley, P.3
  • 33
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli E, Boracchi P, Mariani L, Marubini E: Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 1998, 17: 169-1186.
    • (1998) Stat. Med. , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 35
    • 0032076928 scopus 로고    scopus 로고
    • Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck
    • Bryce TJ, Dewhirst MW, Floyd CE Jr, et al.: Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1998, 41:339-345.
    • (1998) Int. J. Radiat. Oncol. Biol. Phys. , vol.41 , pp. 339-345
    • Bryce, T.J.1    Dewhirst, M.W.2    Floyd Jr., C.E.3
  • 36
    • 0034119230 scopus 로고    scopus 로고
    • Neural network analysis of follow-up data in primary breast cancer
    • Harbeck N, Kates R, Ulm K, et al.: Neural network analysis of follow-up data in primary breast cancer. Int J Biol Markers 2000, 15:116-122.
    • (2000) Int. J. Biol. Markers , vol.15 , pp. 116-122
    • Harbeck, N.1    Kates, R.2    Ulm, K.3
  • 37
    • 0032730109 scopus 로고    scopus 로고
    • Artificial neural networks applied to survival prediction in breast cancer
    • Lundin M, Lundin J, Burke HB, et al.: Artificial neural networks applied to survival prediction in breast cancer. Oncology 1999, 57:281-286.
    • (1999) Oncology , vol.57 , pp. 281-286
    • Lundin, M.1    Lundin, J.2    Burke, H.B.3
  • 38
    • 0042698581 scopus 로고    scopus 로고
    • Genetic adaptive network to predict long term survival in patients with clinically localized prostate cancer
    • Tewari A, Peabody J, Stricker H, et al.: Genetic adaptive network to predict long term survival in patients with clinically localized prostate cancer. J Urol 2001, 165(Suppl):389.
    • (2001) J. Urol. , vol.165 , Issue.SUPPL. , pp. 389
    • Tewari, A.1    Peabody, J.2    Stricker, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.