메뉴 건너뛰기




Volumn 34, Issue 1, 2001, Pages 28-36

A comparison of machine learning methods for the diagnosis of pigmented skin lesions

Author keywords

Decision support; Image classification; Machine learning; Neural networks; Support vector machines

Indexed keywords

ANALYTIC METHOD; ARTICLE; ARTIFICIAL NEURAL NETWORK; DECISION THEORY; DISCRIMINANT ANALYSIS; DISEASE CLASSIFICATION; DYSPLASTIC NEVUS; HUMAN; IMAGE ANALYSIS; LEARNING; MACHINE; MELANOMA; NEVUS; PRIORITY JOURNAL; REGRESSION ANALYSIS;

EID: 0034981810     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1006/jbin.2001.1004     Document Type: Article
Times cited : (216)

References (26)
  • 7
    • 0021135218 scopus 로고
    • Regression modelling strategies for improved prognostic prediction
    • (1984) Stat Med , vol.3 , pp. 143-152
    • Harrel, F.1    Lee, K.2
  • 8
    • 0022786756 scopus 로고
    • Probabilistic prediction in patient management and clinical trials
    • (1986) Stat Med , vol.5 , pp. 421-433
    • Spiegelhalter, D.1
  • 11
    • 0028044828 scopus 로고
    • Artificial neural networks for cancer research: Outcome prediction
    • (1994) Semin Surg Oncol , vol.10 , pp. 73-76
    • Burke, H.1
  • 21
    • 0020083498 scopus 로고
    • The meaning and use of the area under the receiver operating characteristic (ROC) curve
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 22
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.1    McNeil, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.