-
1
-
-
0028788276
-
Application of artifical neural networks to clinical medicine
-
Baxt WG. Application of artifical neural networks to clinical medicine. Lancet 1995; 346:1135-1138.
-
(1995)
Lancet
, vol.346
, pp. 1135-1138
-
-
Baxt, W.G.1
-
3
-
-
0028812688
-
Artificial neural networks in pathology and medical laboratories
-
Dybowski R, Gant V. Artificial neural networks in pathology and medical laboratories. Lancet 1995; 346:1203-1207.
-
(1995)
Lancet
, vol.346
, pp. 1203-1207
-
-
Dybowski, R.1
Gant, V.2
-
4
-
-
0029635662
-
Nervous about artificial neural networks?
-
Wyatt J. Nervous about artificial neural networks? Lancet 1995; 346:1175-1177.
-
(1995)
Lancet
, vol.346
, pp. 1175-1177
-
-
Wyatt, J.1
-
5
-
-
0029840811
-
Neural networks in clinical medicine
-
Penny W, Frost D. Neural networks in clinical medicine. Medical Decision Making 1996; 16:386-398.
-
(1996)
Medical Decision Making
, vol.16
, pp. 386-398
-
-
Penny, W.1
Frost, D.2
-
6
-
-
84972539015
-
Neural networks: A review from a statistical perspective (with discussion)
-
Cheng B, Titterington DM. Neural networks: a review from a statistical perspective (with discussion). Statistical Science 1994; 9:2-54.
-
(1994)
Statistical Science
, vol.9
, pp. 2-54
-
-
Cheng, B.1
Titterington, D.M.2
-
7
-
-
0002983776
-
Statistical aspects of neural networks
-
Barndorff-Nielsen OE, Jensen JL (eds). Chapman and Hall: London
-
Ripley BD. Statistical aspects of neural networks. In Networks and Chaos - Statistical and Probabilistic Aspects, Barndorff-Nielsen OE, Jensen JL (eds). Chapman and Hall: London, 1993.
-
(1993)
Networks and Chaos - Statistical and Probabilistic Aspects
-
-
Ripley, B.D.1
-
9
-
-
0003140365
-
Neural networks in applied statistics (with discussion)
-
Stern HS. Neural networks in applied statistics (with discussion). Technometrics 1996; 38:205-220.
-
(1996)
Technometrics
, vol.38
, pp. 205-220
-
-
Stern, H.S.1
-
10
-
-
0030327681
-
Understanding neural networks at statistical tools
-
Warner B, Misra M. Understanding neural networks at statistical tools. American Statistician 1996; 50:284-293.
-
(1996)
American Statistician
, vol.50
, pp. 284-293
-
-
Warner, B.1
Misra, M.2
-
13
-
-
0004509186
-
Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion)
-
Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Applied Statistics 1994; 43:429-467.
-
(1994)
Applied Statistics
, vol.43
, pp. 429-467
-
-
Royston, P.1
Altman, D.G.2
-
14
-
-
0000583248
-
Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition
-
Fugleman SF, Hérault J (eds), Springer-Verlag: New York
-
Bridle JS. Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition. In Neuro-Computing: Algorithms, Architectures and Applications, Fugleman SF, Hérault J (eds), Springer-Verlag: New York, 1990.
-
(1990)
Neuro-computing: Algorithms, Architectures and Applications
-
-
Bridle, J.S.1
-
15
-
-
0001699291
-
Training stochastic model recognition algorithms as networks can leads to maximum mutual information estimation of parameters
-
Touretzky DS (ed.), Morgan Kaufmann: San Mateo, CA
-
Bridle JS. Training stochastic model recognition algorithms as networks can leads to maximum mutual information estimation of parameters. In Advances in Neural Information Processing Systems 2, Touretzky DS (ed.), Morgan Kaufmann: San Mateo, CA, 1990.
-
(1990)
Advances in Neural Information Processing Systems 2
-
-
Bridle, J.S.1
-
16
-
-
84995047613
-
Polytomous logistic regression
-
Engel J. Polytomous logistic regression. Statistica Neerlandica 1988; 42:233-252.
-
(1988)
Statistica Neerlandica
, vol.42
, pp. 233-252
-
-
Engel, J.1
-
20
-
-
0024732792
-
Connectionist learning procedures
-
Hinton GE. Connectionist learning procedures. Artificial Intelligence 1989; 40:185-234.
-
(1989)
Artificial Intelligence
, vol.40
, pp. 185-234
-
-
Hinton, G.E.1
-
24
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Controls, Signals, and Systems 1989; 2:303-314.
-
(1989)
Mathematics of Controls, Signals, and Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
25
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 1989; 2:183-192.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.1
-
26
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators Neural Networks 1989; 2:359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
27
-
-
0000756680
-
The estimation from individual records of the relationship between dose and quantal response
-
Finney DJ. The estimation from individual records of the relationship between dose and quantal response. Biometrika 1947; 34:320-334.
-
(1947)
Biometrika
, vol.34
, pp. 320-334
-
-
Finney, D.J.1
-
29
-
-
0011358302
-
Least-absolute-deviations fits for generalized linear models
-
Morgenthaler S. Least-absolute-deviations fits for generalized linear models. Biometrika 1992; 79:747-754.
-
(1992)
Biometrika
, vol.79
, pp. 747-754
-
-
Morgenthaler, S.1
-
30
-
-
0020148757
-
Resistant fits for some commonly used logistic models with medical applications
-
Pregibon D. Resistant fits for some commonly used logistic models with medical applications. Biometrics 1982; 38:485-498.
-
(1982)
Biometrics
, vol.38
, pp. 485-498
-
-
Pregibon, D.1
-
32
-
-
0343868224
-
-
Institute for Parallel and Distributed High Performance Systems
-
Zell A, Mamier G, Vogt M, Mache N, Hübner R, Döring S, Herrmann KU, Soyez T, Schmalzl M, Sommer T, Hatzigeorgiou A, Posselt D, Schreiner T, Kett B, Clemente G, Wieland J. Stuttgart Neural Network Simulator, User Manual, Version 4.1, Report no 6/95. Institute for Parallel and Distributed High Performance Systems, 1995.
-
(1995)
Stuttgart Neural Network Simulator, User Manual, Version 4.1, Report No 6/95
-
-
Zell, A.1
Mamier, G.2
Vogt, M.3
Mache, N.4
Hübner, R.5
Döring, S.6
Herrmann, K.U.7
Soyez, T.8
Schmalzl, M.9
Sommer, T.10
Hatzigeorgiou, A.11
Posselt, D.12
Schreiner, T.13
Kett, B.14
Clemente, G.15
Wieland, J.16
-
33
-
-
0028044828
-
Artificial neural networks for cancer research: Outcome prediction
-
Burke HB. Artificial neural networks for cancer research: outcome prediction. Seminars in Surgical Oncology 1994; 10:73-79.
-
(1994)
Seminars in Surgical Oncology
, vol.10
, pp. 73-79
-
-
Burke, H.B.1
-
34
-
-
0028019225
-
Survival analysis of censored data: Neural network analysis detection of complex interactions between variables
-
De Laurentiis M, Ravdin PM. Survival analysis of censored data: neural network analysis detection of complex interactions between variables. Breast Cancer Research and Treatment 1994; 32:113-118.
-
(1994)
Breast Cancer Research and Treatment
, vol.32
, pp. 113-118
-
-
De Laurentiis, M.1
Ravdin, P.M.2
-
35
-
-
0028855843
-
A neural network model for survival data
-
Faraggi D, Simon R. A neural network model for survival data. Statistics in Medicine 1995; 14:73-82.
-
(1995)
Statistics in Medicine
, vol.14
, pp. 73-82
-
-
Faraggi, D.1
Simon, R.2
-
36
-
-
0027741408
-
Neural network analysis to predict treatment outcome
-
Kappen HJ, Neijt JP. Neural network analysis to predict treatment outcome. Annals of Oncology 1993; 4:Supplement S31-34.
-
(1993)
Annals of Oncology
, vol.4
, Issue.SUPPL.
-
-
Kappen, H.J.1
Neijt, J.P.2
-
38
-
-
0026794564
-
A practical application of neural network analysis for predicting outcome of individual breast cancer patients
-
Ravdin PM, Clark GM. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Research and Treatement 1992; 22:285-293.
-
(1992)
Breast Cancer Research and Treatement
, vol.22
, pp. 285-293
-
-
Ravdin, P.M.1
Clark, G.M.2
-
39
-
-
0026778445
-
A demonstration that breast cancer recurrence can be predicted by neural network analysis
-
Ravdin PM, Clark GM, Hilsenbeck SG, Owens MA, Vendely P, Pandian MR, McGuire WL. A demonstration that breast cancer recurrence can be predicted by neural network analysis. Breast Cancer Research and Treatment 1992; 21:47-53.
-
(1992)
Breast Cancer Research and Treatment
, vol.21
, pp. 47-53
-
-
Ravdin, P.M.1
Clark, G.M.2
Hilsenbeck, S.G.3
Owens, M.A.4
Vendely, P.5
Pandian, M.R.6
McGuire, W.L.7
-
41
-
-
0001401162
-
On a correspondence between models in binary regression analysis and in survival analysis
-
Doksum KA, Gasko M. On a correspondence between models in binary regression analysis and in survival analysis. International Statistical Review 1990; 58:243-252.
-
(1990)
International Statistical Review
, vol.58
, pp. 243-252
-
-
Doksum, K.A.1
Gasko, M.2
-
42
-
-
0017873866
-
Regression analysis of grouped survival data with application to breast cancer data
-
Prentice RL, Gloeckler LA. Regression analysis of grouped survival data with application to breast cancer data. Biometrics 1978; 34:57-67.
-
(1978)
Biometrics
, vol.34
, pp. 57-67
-
-
Prentice, R.L.1
Gloeckler, L.A.2
-
45
-
-
0026466302
-
Treatment decisions in axillary node-negative breast cancer patients
-
McGuire WL, Tandon AK, Allred DC, Chamness GC, Ravdin PM, Clark GM. Treatment decisions in axillary node-negative breast cancer patients. Monographs - National Cancer Institute 1992; 11:173-180.
-
(1992)
Monographs - National Cancer Institute
, vol.11
, pp. 173-180
-
-
McGuire, W.L.1
Tandon, A.K.2
Allred, D.C.3
Chamness, G.C.4
Ravdin, P.M.5
Clark, G.M.6
-
46
-
-
0024307709
-
Predictability of the survival of patients with advanced ovarian cancer
-
Van Houwelingen JC, ten Bokkel Huinink WW, van der Burg ME, van Oosterom AT. Neijt JP. Predictability of the survival of patients with advanced ovarian cancer. Journal of Clinical Oncology 1989; 7:769-773.
-
(1989)
Journal of Clinical Oncology
, vol.7
, pp. 769-773
-
-
Van Houwelingen, J.C.1
Ten Bokkel Huinink, W.W.2
Van Der Burg, M.E.3
Van Oosterom, A.T.4
Neijt, J.P.5
-
47
-
-
0031921607
-
Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
-
Biganzoli E, Boracchi P, Mariani L, Marubini E. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Statistics in Medicine 1998; 17:1169-1186.
-
(1998)
Statistics in Medicine
, vol.17
, pp. 1169-1186
-
-
Biganzoli, E.1
Boracchi, P.2
Mariani, L.3
Marubini, E.4
-
50
-
-
0028544395
-
Network information criterion - Determining the number of hidden units for artificial neural network models
-
Murata N, Yoshizawa S, Amari SI. Network information criterion - determining the number of hidden units for artificial neural network models. IEEE Transactions on Neural Networks, 1994; 5:865-872.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.I.3
-
51
-
-
0343868221
-
Receiver operating characteristic (ROC) methodology in artificial neural networks with biomedical applications
-
De Leo JM, Campbell G. Receiver operating characteristic (ROC) methodology in artificial neural networks with biomedical applications. In Proceedings of the World Congress on Neural Networks, 1995.
-
(1995)
Proceedings of the World Congress on Neural Networks
-
-
De Leo, J.M.1
Campbell, G.2
-
53
-
-
0025730090
-
Nuclear grading of breast carcinoma by image analysis classification by multivariate and neural network analysis
-
Dawson AE, Austin RE, Weinberg DS. Nuclear grading of breast carcinoma by image analysis classification by multivariate and neural network analysis. American Journal of Clinical Pathology 1991; 95:Supplement S29-37.
-
(1991)
American Journal of Clinical Pathology
, vol.95
, Issue.SUPPL.
-
-
Dawson, A.E.1
Austin, R.E.2
Weinberg, D.S.3
-
55
-
-
0025942666
-
Application of neural nets to ultrasound tissue characterization
-
Ostrem JS, Valdes AD, Edmonds PD. Application of neural nets to ultrasound tissue characterization. Ultrasonic Imaging 1991; 13:298-299.
-
(1991)
Ultrasonic Imaging
, vol.13
, pp. 298-299
-
-
Ostrem, J.S.1
Valdes, A.D.2
Edmonds, P.D.3
-
56
-
-
0026246931
-
Application of an artifical neural network in radiographic diagnosis
-
Piraino DW, Amartur SC, Richmond BJ, Schils JP, Thome JM, Belhobek GH, Schlucter MD. Application of an artifical neural network in radiographic diagnosis. Journal of Digital Imaging 1991; 4:226-232.
-
(1991)
Journal of Digital Imaging
, vol.4
, pp. 226-232
-
-
Piraino, D.W.1
Amartur, S.C.2
Richmond, B.J.3
Schils, J.P.4
Thome, J.M.5
Belhobek, G.H.6
Schlucter, M.D.7
-
57
-
-
0026580903
-
Application of neural networks to the interpretation of laboratory data in cancer diagnosis
-
Astion ML, Wilding P. Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clinical Chemistry 1992; 38:34-38.
-
(1992)
Clinical Chemistry
, vol.38
, pp. 34-38
-
-
Astion, M.L.1
Wilding, P.2
-
58
-
-
0026604375
-
Neural networks and diagnosis in the clinical laboratory: State of the art
-
Cicchetti DV. Neural networks and diagnosis in the clinical laboratory: state of the art. Clinical Chemistry 1991; 38:9-10.
-
(1991)
Clinical Chemistry
, vol.38
, pp. 9-10
-
-
Cicchetti, D.V.1
-
59
-
-
0026483164
-
Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence
-
Goldberg V, Manduca A, Ewert DL, Gisvold JJ, Greenleaf JF. Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence. Medical Physics 1992; 19:1475-1481.
-
(1992)
Medical Physics
, vol.19
, pp. 1475-1481
-
-
Goldberg, V.1
Manduca, A.2
Ewert, D.L.3
Gisvold, J.J.4
Greenleaf, J.F.5
-
60
-
-
0026578134
-
Introduction of a neuronal network as a tool for diagnostic analysis and classification based on experimental pathologic data
-
Nafe R, Chortiz H. Introduction of a neuronal network as a tool for diagnostic analysis and classification based on experimental pathologic data. Experimental and Toxicologic Pathology 1992; 44:17-24.
-
(1992)
Experimental and Toxicologic Pathology
, vol.44
, pp. 17-24
-
-
Nafe, R.1
Chortiz, H.2
-
61
-
-
0026885478
-
Computer-assisted image interpretation: Use of a neural network to differentiate tubular carcinoma from sclerosing adenosis
-
O'Leary TJ, Mikel UV, Becker RL. Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Modern Pathology 1992; 5:402-405.
-
(1992)
Modern Pathology
, vol.5
, pp. 402-405
-
-
O'Leary, T.J.1
Mikel, U.V.2
Becker, R.L.3
-
62
-
-
0027293841
-
Evaluation of laboratory data by conventional statistics and by three types of neural networks
-
Schweiger CR, Soeregi G, Spitzauer S, Maenner G, Pohl AL. Evaluation of laboratory data by conventional statistics and by three types of neural networks. Clinical Chemistry 1993; 39:1966-1971.
-
(1993)
Clinical Chemistry
, vol.39
, pp. 1966-1971
-
-
Schweiger, C.R.1
Soeregi, G.2
Spitzauer, S.3
Maenner, G.4
Pohl, A.L.5
-
63
-
-
0028299159
-
Computer-assisted image classification: Use of neural networks in anatomic pathology
-
Becker RL. Computer-assisted image classification: use of neural networks in anatomic pathology. Cancer Letters 1994; 77:111-117.
-
(1994)
Cancer Letters
, vol.77
, pp. 111-117
-
-
Becker, R.L.1
-
64
-
-
0028304249
-
Classification of patients affected by multiple myeloma using a neural network software
-
Bugliosi R, Tribalto M, Avvisati G, Boccadoro M, De Martinis C, Friera R, Mandelli F, Pileri A, Papa G. Classification of patients affected by multiple myeloma using a neural network software. European Journal of Haematobgy 1994; 52:182-183.
-
(1994)
European Journal of Haematobgy
, vol.52
, pp. 182-183
-
-
Bugliosi, R.1
Tribalto, M.2
Avvisati, G.3
Boccadoro, M.4
De Martinis, C.5
Friera, R.6
Mandelli, F.7
Pileri, A.8
Papa, G.9
-
65
-
-
0028070813
-
Increasing the power of surrogate endpoint biomarkers: The aggregation of predictive factors
-
Burke HB. Increasing the power of surrogate endpoint biomarkers: the aggregation of predictive factors. Journal of Cellular Biochemistry 1994; 19 Supplement 278-282.
-
(1994)
Journal of Cellular Biochemistry
, vol.19
, Issue.SUPPL.
, pp. 278-282
-
-
Burke, H.B.1
-
66
-
-
0027942035
-
Prognostic factors: Rationale and methods of analysis and integration
-
Clark GM, Hilsenbeck SG, Ravdin PM, De Laurentiis M, Osborne CK. Prognostic factors: rationale and methods of analysis and integration. Breast Cancer Research and Treatement 1994; 32:105-112.
-
(1994)
Breast Cancer Research and Treatement
, vol.32
, pp. 105-112
-
-
Clark, G.M.1
Hilsenbeck, S.G.2
Ravdin, P.M.3
De Laurentiis, M.4
Osborne, C.K.5
-
67
-
-
0028105994
-
Neural network diagnosis of malignant melanoma from color images
-
Ercal F, Chawla A, Stoecker WV, Lee H, Moss RH. Neural network diagnosis of malignant melanoma from color images. IEEE Transations on Biomedical Engineering 1994; 41:837-845.
-
(1994)
IEEE Transations on Biomedical Engineering
, vol.41
, pp. 837-845
-
-
Ercal, F.1
Chawla, A.2
Stoecker, W.V.3
Lee, H.4
Moss, R.H.5
-
68
-
-
0028501153
-
Image analysis and diagnostic classification of hepatocellular carcinoma using neural networks and multivariate discriminant functions
-
Erler BS, Hsu L, Truong HM, Petrovic LM, Kim SS, Huh MH, Ferrell LD, Thung SN, Geller SA, Marchevsky AM. Image analysis and diagnostic classification of hepatocellular carcinoma using neural networks and multivariate discriminant functions. Laboratory Investigation 1994; 71:446-451.
-
(1994)
Laboratory Investigation
, vol.71
, pp. 446-451
-
-
Erler, B.S.1
Hsu, L.2
Truong, H.M.3
Petrovic, L.M.4
Kim, S.S.5
Huh, M.H.6
Ferrell, L.D.7
Thung, S.N.8
Geller, S.A.9
Marchevsky, A.M.10
-
69
-
-
0028005364
-
Prediction of breast cancer malignancy using an artificial neural network
-
Floyd Jr CE, JYL, Yun AJ, Sullivan DC, Kornguth PJ. Prediction of breast cancer malignancy using an artificial neural network. Cancer 1994; 74:2944-2948.
-
(1994)
Cancer
, vol.74
, pp. 2944-2948
-
-
Ce F., Jr.1
Jyl2
Yun, A.J.3
Sullivan, D.C.4
Kornguth, P.J.5
-
70
-
-
0028296907
-
Computerized characterization of mammorgraphic masses: Analysis of spiculation
-
Giger ML, Vyborny CJ, Schmidt RA. Computerized characterization of mammorgraphic masses: analysis of spiculation. Cancer Letters 1994; 77:201-211.
-
(1994)
Cancer Letters
, vol.77
, pp. 201-211
-
-
Giger, M.L.1
Vyborny, C.J.2
Schmidt, R.A.3
-
71
-
-
0028693248
-
Computer assisted grading of astrocytoma
-
Kolles H, von Wangenheim A, Niedermayer I, Vince GH, Feiden W. Computer assisted grading of astrocytoma. Verhandlungen der Deutschen Gesellschaft für Pathologie 1994; 78:427-431.
-
(1994)
Verhandlungen der Deutschen Gesellschaft für Pathologie
, vol.78
, pp. 427-431
-
-
Kolles, H.1
Von Wangenheim, A.2
Niedermayer, I.3
Vince, G.H.4
Feiden, W.5
-
72
-
-
0028296903
-
How to improve a neural network for early detection of hepatic cancer
-
Maclin PS, Dempsey J. How to improve a neural network for early detection of hepatic cancer. Cancer Letters 1994; 77:95-101.
-
(1994)
Cancer Letters
, vol.77
, pp. 95-101
-
-
Maclin, P.S.1
Dempsey, J.2
-
74
-
-
0028210335
-
Artificial neural networks for early detection and diagnosis of cancer
-
Rogers SK, Ruck DW, Kabrisky M. Artificial neural networks for early detection and diagnosis of cancer. Cancer Letters 1994; 77:79-83.
-
(1994)
Cancer Letters
, vol.77
, pp. 79-83
-
-
Rogers, S.K.1
Ruck, D.W.2
Kabrisky, M.3
-
75
-
-
0028148549
-
Artificial neural networks in the diagnosis and prognosis of prostate cancer: A pilot study
-
Snow PB, Smith DS, Catalona WJ. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. Journal of Urology 1994; 152:1923-1926.
-
(1994)
Journal of Urology
, vol.152
, pp. 1923-1926
-
-
Snow, P.B.1
Smith, D.S.2
Catalona, W.J.3
-
76
-
-
0028219772
-
Application of backpropagation neural networks to diagnosis of breast and ovarian cancer
-
Wilding P, Morgan MA, Grygotis AE, Shoffner MA, Rosato EF. Application of backpropagation neural networks to diagnosis of breast and ovarian cancer. Cancer Letters 1994; 77:145-153.
-
(1994)
Cancer Letters
, vol.77
, pp. 145-153
-
-
Wilding, P.1
Morgan, M.A.2
Grygotis, A.E.3
Shoffner, M.A.4
Rosato, E.F.5
-
77
-
-
0028537379
-
Reduction of false positives in computerized detection of lung nodules in chest radiographs using artificial neural networks, discriminant analysis, and a rule-based scheme
-
Wu YC, Doi K, Giger ML, Metz CE, Zhang W. Reduction of false positives in computerized detection of lung nodules in chest radiographs using artificial neural networks, discriminant analysis, and a rule-based scheme. Journal of Digital Imaging 1994; 7:196-207.
-
(1994)
Journal of Digital Imaging
, vol.7
, pp. 196-207
-
-
Wu, Y.C.1
Doi, K.2
Giger, M.L.3
Metz, C.E.4
Zhang, W.5
-
79
-
-
0029095797
-
Breast cancer: Prediction with artificial neural network based on bi-rads standardized lexicon
-
Baker JA, Kornguth PJ, Lo JY, Williford ME, Floyd CE. Breast cancer: prediction with artificial neural network based on bi-rads standardized lexicon. Radiology 1995; 196:817-822.
-
(1995)
Radiology
, vol.196
, pp. 817-822
-
-
Baker, J.A.1
Kornguth, P.J.2
Lo, J.Y.3
Williford, M.E.4
Floyd, C.E.5
-
80
-
-
0028878836
-
Use of a neural network and a multiple regression model to predict histologic grade of astrocytoma from mri appearances
-
Christy PS, Tervonen O, Scheithauer BW, Forbes GS. Use of a neural network and a multiple regression model to predict histologic grade of astrocytoma from mri appearances. Neuroradiology 1995; 37:89-93.
-
(1995)
Neuroradiology
, vol.37
, pp. 89-93
-
-
Christy, P.S.1
Tervonen, O.2
Scheithauer, B.W.3
Forbes, G.S.4
-
81
-
-
0029054260
-
Building clinical classifiers using incomplete observations - A neural network ensemble for hepatoma detection in patients with cirrhosis
-
Doyle HR, Parmanto B, Munro PW, Marino IR, Aldrighetti L, Doria C, McMichael J, Fung JJ. Building clinical classifiers using incomplete observations - a neural network ensemble for hepatoma detection in patients with cirrhosis. Methods of Information in Medicine 1995; 34:253-258.
-
(1995)
Methods of Information in Medicine
, vol.34
, pp. 253-258
-
-
Doyle, H.R.1
Parmanto, B.2
Munro, P.W.3
Marino, I.R.4
Aldrighetti, L.5
Doria, C.6
McMichael, J.7
Fung, J.J.8
-
83
-
-
0029102693
-
Solitary pulmonary nodules: Determining the likelihood of malignancy with neural network analysis
-
Gurney JW, Swensen ST. Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis. Radiology 1995: 196: 823-829.
-
(1995)
Radiology
, vol.196
, pp. 823-829
-
-
Gurney, J.W.1
Swensen, S.T.2
-
84
-
-
0028944092
-
Prediction of the early prognosis of the hepatectomized patient with hepatocellular carcinoma with a neural network
-
Hamamoto I, Okada S, Hashimoto T, Wakabayashi H, Maeba T, Maeta H. Prediction of the early prognosis of the hepatectomized patient with hepatocellular carcinoma with a neural network. Computers in Biology and Medicine 1995; 25:49-59.
-
(1995)
Computers in Biology and Medicine
, vol.25
, pp. 49-59
-
-
Hamamoto, I.1
Okada, S.2
Hashimoto, T.3
Wakabayashi, H.4
Maeba, T.5
Maeta, H.6
-
85
-
-
0028920449
-
Automated grading of astrocytomas based on histomorphometric analysis of Ki-67 and Feulgen stained paraffin sections, classification results of neuronal networks and discriminant analysis
-
Kolles H, von Wangenheim A, Vince GH, Niedermayer I, Feiden W. Automated grading of astrocytomas based on histomorphometric analysis of Ki-67 and Feulgen stained paraffin sections, classification results of neuronal networks and discriminant analysis. Annals Cellular Pathology 1995; 8:101-116.
-
(1995)
Annals Cellular Pathology
, vol.8
, pp. 101-116
-
-
Kolles, H.1
Von Wangenheim, A.2
Vince, G.H.3
Niedermayer, I.4
Feiden, W.5
-
86
-
-
0028932561
-
Neural network analysis of quantitative histological factors to predict pathological stage in clinical stage i nonseminomatous testicular cancer
-
Moul JW, Snow PB, Fernandez EB, Maher PD, Sesterhenn IA. Neural network analysis of quantitative histological factors to predict pathological stage in clinical stage i nonseminomatous testicular cancer. Journal of Urology 1995; 153:1674-1677.
-
(1995)
Journal of Urology
, vol.153
, pp. 1674-1677
-
-
Moul, J.W.1
Snow, P.B.2
Fernandez, E.B.3
Maher, P.D.4
Sesterhenn, I.A.5
-
87
-
-
0006051824
-
Commentary on the use of neural networks in clinical urology
-
Niederberger CS. Commentary on the use of neural networks in clinical urology. Journal of Urology 1995; 153:1362.
-
(1995)
Journal of Urology
, vol.153
, pp. 1362
-
-
Niederberger, C.S.1
-
88
-
-
0028787742
-
A non-invasive test for the pre-cancerous breast
-
Simpson HW, McArdle C, Pauson AW, Hume P, Turkes A, Griffiths K. A non-invasive test for the pre-cancerous breast. European Journal of Cancer 1995; 31 A: 1768-1772.
-
(1995)
European Journal of Cancer
, vol.31 A
, pp. 1768-1772
-
-
Simpson, H.W.1
McArdle, C.2
Pauson, A.W.3
Hume, P.4
Turkes, A.5
Griffiths, K.6
-
90
-
-
0028936850
-
Neural networks as an aid in the diagnosis of lymphocyte-rich effusions
-
Truong H, Morimoto R, Walts AE, Erler B, Marchevsky A. Neural networks as an aid in the diagnosis of lymphocyte-rich effusions. Analytical and Quantitative Cytology and Histology 1995; 17:48-54.
-
(1995)
Analytical and Quantitative Cytology and Histology
, vol.17
, pp. 48-54
-
-
Truong, H.1
Morimoto, R.2
Walts, A.E.3
Erler, B.4
Marchevsky, A.5
-
95
-
-
0030743761
-
Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
-
Bottaci L, Drew PJ, Hartley JE, Hadfield MB, Farouk R, Lee PWR, Macintyre IMC, Duthie GS, Monson JRT. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 1997; 350:469-472.
-
(1997)
Lancet
, vol.350
, pp. 469-472
-
-
Bottaci, L.1
Drew, P.J.2
Hartley, J.E.3
Hadfield, M.B.4
Farouk, R.5
Lee, P.W.R.6
Macintyre, I.M.C.7
Duthie, G.S.8
Monson, J.R.T.9
-
96
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN, Harrell FE, Marks JR, Winchester DP, Bostwick DG. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997; 79:857-862.
-
(1997)
Cancer
, vol.79
, pp. 857-862
-
-
Burke, H.B.1
Goodman, P.H.2
Rosen, D.B.3
Henson, D.E.4
Weinstein, J.N.5
Harrell, F.E.6
Marks, J.R.7
Winchester, D.P.8
Bostwick, D.G.9
-
98
-
-
0032533761
-
A comparison of statistical learning methods on the GUSTO database
-
Ennis M, Hinton G, Naylor D, Revow M, Tibshirani R. A comparison of statistical learning methods on the GUSTO database. Statistics in Medicine 1998; 17:2501-2508.
-
(1998)
Statistics in Medicine
, vol.17
, pp. 2501-2508
-
-
Ennis, M.1
Hinton, G.2
Naylor, D.3
Revow, M.4
Tibshirani, R.5
-
99
-
-
0028918696
-
Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction, results from an international trial of 41021 patients
-
Lee KL, Woodlief LH, Topol EJ, Weaver WD, Betriu A, Col J, Simoons M, Aylward P, Van de Werf F, Califf RM. Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction, results from an international trial of 41021 patients. Circulation 1995; 91:1659-1668.
-
(1995)
Circulation
, vol.91
, pp. 1659-1668
-
-
Lee, K.L.1
Woodlief, L.H.2
Topol, E.J.3
Weaver, W.D.4
Betriu, A.5
Col, J.6
Simoons, M.7
Aylward, P.8
Van De Werf, F.9
Califf, R.M.10
-
100
-
-
0027240597
-
An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction
-
GUSTO-1 Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. New England Journal of Medicine 1993; 329:673-682.
-
(1993)
New England Journal of Medicine
, vol.329
, pp. 673-682
-
-
-
101
-
-
0030297904
-
Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
-
Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 1996; 49:1225-1231.
-
(1996)
Journal of Clinical Epidemiology
, vol.49
, pp. 1225-1231
-
-
Tu, J.V.1
-
102
-
-
0031893485
-
Predicting mortality after coronary artery bypass surgery: What do artifical neural networks learn?
-
Tu JV, Weinstein MC, McNeill BJ, Naylor CD and the Steering Committee of the Cardiac Care Network of Ontario. Predicting mortality after coronary artery bypass surgery: what do artifical neural networks learn? Medical Decision Making 1998; 18:229-235.
-
(1998)
Medical Decision Making
, vol.18
, pp. 229-235
-
-
Tu, J.V.1
Weinstein, M.C.2
McNeill, B.J.3
Naylor, C.D.4
|