메뉴 건너뛰기




Volumn 14, Issue 3, 1998, Pages 317-326

Evolving artificial neural networks for screening features from mammograms

Author keywords

Artificial neural networks; Breast cancer; Computer assisted diagnosis; Evolutionary programming; Mammography

Indexed keywords

ALGORITHMS; COMPUTER PROGRAMMING; FEATURE EXTRACTION; LEARNING SYSTEMS; MAMMOGRAPHY; MEDICAL PROBLEMS;

EID: 18544399463     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0933-3657(98)00040-2     Document Type: Article
Times cited : (67)

References (15)
  • 1
    • 0031122888 scopus 로고    scopus 로고
    • Evolutionary computation: Comments on the history and current state
    • Bäck T, Hammel U, Schwefel HP Evolutionary computation: comments on the history and current state. IEEE Trans Evol Comput. 1:1997;3-17.
    • (1997) IEEE Trans Evol Comput , vol.1 , pp. 3-17
    • Bäck, T.1    Hammel, U.2    Schwefel, H.P.3
  • 2
    • 0029095797 scopus 로고
    • Breast cancer: Prediction with artificial neural network based on BI-RADS standardized lexicon
    • Baker JA, Kornguth PJ, Lo JY, Williford ME, Floyd CE Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology. 196:1995;817-822.
    • (1995) Radiology , vol.196 , pp. 817-822
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Williford, M.E.4    Floyd, C.E.5
  • 4
    • 0030087608 scopus 로고    scopus 로고
    • Determining and classifying the region of interest in ultrasonic images of the breast using neural networks
    • Buller D, Buller A, Innocent PR, Pawlak W Determining and classifying the region of interest in ultrasonic images of the breast using neural networks. Artif Intell Med. 8:1996;53-66.
    • (1996) Artif Intell Med , vol.8 , pp. 53-66
    • Buller, D.1    Buller, A.2    Innocent, P.R.3    Pawlak, W.4
  • 5
    • 0028005364 scopus 로고
    • Prediction of breast cancer malignancy using an artificial neural network
    • Floyd CE, Lo JY, Yun AJ, Sullivan DC, Kornguth PJ Prediction of breast cancer malignancy using an artificial neural network. Cancer. 74:1994;2944-2998.
    • (1994) Cancer , vol.74 , pp. 2944-2998
    • Floyd, C.E.1    Lo, J.Y.2    Yun, A.J.3    Sullivan, D.C.4    Kornguth, P.J.5
  • 7
    • 0029100867 scopus 로고
    • Evolving neural networks for detecting breast cancer
    • Fogel DB, Wasson EC, Boughton EM Evolving neural networks for detecting breast cancer. Cancer Lett. 96:1995;49-53.
    • (1995) Cancer Lett , vol.96 , pp. 49-53
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3
  • 8
    • 0030891824 scopus 로고    scopus 로고
    • Application of image analysis and neural networks to the pathology diagnosis of intraductal proliferative lesions of the breast
    • Fukushima N, Shinbata H, Hasebe T, Yokose T, Sato A, Mukai K Application of image analysis and neural networks to the pathology diagnosis of intraductal proliferative lesions of the breast. Jpn J Cancer Res. 88:1997;328-333.
    • (1997) Jpn J Cancer Res , vol.88 , pp. 328-333
    • Fukushima, N.1    Shinbata, H.2    Hasebe, T.3    Yokose, T.4    Sato, A.5    Mukai, K.6
  • 9
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H Multilayer feedforward networks are universal approximators. Neural Netw. 2:1989;359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0030944929 scopus 로고    scopus 로고
    • Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features
    • Lo JY, Baker JA, Kornguth PJ, Iglehart JD, Floyd CE Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features. Radiology. 203:1997;159-163.
    • (1997) Radiology , vol.203 , pp. 159-163
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Iglehart, J.D.4    Floyd, C.E.5
  • 12
    • 0031230225 scopus 로고    scopus 로고
    • Assessment of the recent consensus development panel on screening women aged 40-49 for breast cancer
    • Monsees BS Assessment of the recent consensus development panel on screening women aged 40-49 for breast cancer. Am J Roentgenol. 169:1997;625-626.
    • (1997) Am J Roentgenol , vol.169 , pp. 625-626
    • Monsees, B.S.1
  • 14
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F Networks for approximation and learning. Proc IEEE. 78:1990;1481-1497.
    • (1990) Proc IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 15
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu Y, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology. 187:1993;81-87.
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.