메뉴 건너뛰기




Volumn 28, Issue 5, 2001, Pages 804-811

A neural network approach to breast cancer diagnosis as a constraint satisfaction problem

Author keywords

Breast cancer; Constraint satisfaction; Data mining; Neural networks

Indexed keywords

ASSOCIATIVE PROCESSING; ASSOCIATIVE STORAGE; CONSTRAINT SATISFACTION PROBLEMS; DATA MINING; DIAGNOSIS; DISEASES; PROBLEM SOLVING;

EID: 0035006815     PISSN: 00942405     EISSN: None     Source Type: Journal    
DOI: 10.1118/1.1367861     Document Type: Article
Times cited : (37)

References (26)
  • 1
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, and C. E. Metz, "Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer," Radiology 187, 81-87 (1993).
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    K, D.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 2
    • 0028849805 scopus 로고
    • Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
    • H.-P. Chan, S. C. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, "Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network," Med. Phys. 22, 1555-1567 (1995).
    • (1995) Med. Phys. , vol.22 , pp. 1555-1567
    • Chan, H.-P.1    Lo, S.C.2    Sahiner, B.3    Lam, K.L.4    Helvie, M.A.5
  • 4
    • 0030048533 scopus 로고    scopus 로고
    • Artificial neural network: Improving the quality of breast biopsy recommendations
    • J. A. Baker, P. J. Kornguth, J. Y. Lo, and C. E. Floyd, Jr., "Artificial neural network: Improving the quality of breast biopsy recommendations," Radiology 198, 131-135 (1996).
    • (1996) Radiology , vol.198 , pp. 131-135
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Floyd C.E., Jr.4
  • 5
    • 0030944929 scopus 로고    scopus 로고
    • Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features
    • J. Y. Lo, J. A. Baker, P. J. Kornguth, I. D. Iglehart, and C. E. Floyd, Jr., "Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features," Radiology 203, 159-163 (1997).
    • (1997) Radiology , vol.203 , pp. 159-163
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Iglehart, I.D.4    Floyd C.E., Jr.5
  • 8
    • 0032872797 scopus 로고    scopus 로고
    • Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: A ROC study
    • H.-P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E. Wilson, and D. D. Adler, "Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: A ROC study," Radiology 212, 817-827 (1999).
    • (1999) Radiology , vol.212 , pp. 817-827
    • Chan, H.-P.1    Sahiner, B.2    Helvie, M.A.3    Petrick, N.4    Roubidoux, M.A.5    Wilson, T.E.6    Adler, D.D.7
  • 9
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • N. Lavrac, "Selected techniques for data mining in medicine," Artif. Intell. Med. 16, 3-23 (1999).
    • (1999) Artif. Intell. Med. , vol.16 , pp. 3-23
    • Lavrac, N.1
  • 10
    • 0030087643 scopus 로고    scopus 로고
    • Extracting rules from pruned networks for breast cancer diagnosis
    • R. Setiono, "Extracting rules from pruned networks for breast cancer diagnosis," Artif. Intell. Med. 8, 37-51 (1996).
    • (1996) Artif. Intell. Med. , vol.8 , pp. 37-51
    • Setiono, R.1
  • 11
    • 0032399390 scopus 로고    scopus 로고
    • Analysis of hidden representations by greedy clustering
    • R. Setiono and H. Liu, "Analysis of hidden representations by greedy clustering," Connection Science 10, 21-42 (1998).
    • (1998) Connection Science , vol.10 , pp. 21-42
    • Setiono, R.1    H, L.2
  • 12
    • 0032812327 scopus 로고    scopus 로고
    • Rule-extraction by backpropagation of polyhedra
    • F. Maine, "Rule-extraction by backpropagation of polyhedra," Neural Networks 12, 717-725 (1999).
    • (1999) Neural Networks , vol.12 , pp. 717-725
    • Maine, F.1
  • 13
    • 0033754933 scopus 로고    scopus 로고
    • Breast biopsy: Case-based reasoning computer aid using mammography findings for the decision to biopsy
    • C. E. Floyd, Jr., J. Y. Lo, and G. D. Tourassi, "Breast biopsy: Case-based reasoning computer aid using mammography findings for the decision to biopsy," AJR 175, 1347-1352 (2000).
    • (2000) AJR , vol.175 , pp. 1347-1352
    • Floyd C.E., Jr.1    Lo, J.Y.2    Tourassi, G.D.3
  • 14
    • 0002331653 scopus 로고    scopus 로고
    • Constraint satisfaction problems
    • edited by C. T. Leondes Academic, San Diego, CA
    • H. N. Schaller, "Constraint satisfaction problems," in Optimization Algorithms, edited by C. T. Leondes (Academic, San Diego, CA, 1998), pp. 209-248.
    • (1998) Optimization Algorithms , pp. 209-248
    • Schaller, H.N.1
  • 15
    • 0026138747 scopus 로고
    • Medical image segmentation by a constraint satisfaction neural network
    • C. T. Chen, E. C.-K. Tsao, and W. C. Tsao, "Medical image segmentation by a constraint satisfaction neural network," IEEE Trans. Nucl. Sci. 38, 678-686 (1991).
    • (1991) IEEE Trans. Nucl. Sci. , vol.38 , pp. 678-686
    • Chen, C.T.1    Tsao, E.C.-K.2    Tsao, W.C.3
  • 16
    • 0028463197 scopus 로고
    • Segmentation of magnetic-resonance brain images using analog constraint satisfaction neural networks
    • A. J. Worth and D. N. Kennedy, "Segmentation of magnetic-resonance brain images using analog constraint satisfaction neural networks," Image Vis. Comput. 12, 345-354 (1994).
    • (1994) Image Vis. Comput. , vol.12 , pp. 345-354
    • Worth, A.J.1    Kennedy, D.N.2
  • 17
    • 0033310903 scopus 로고    scopus 로고
    • Image segmentation based on multi-scan constraint satisfaction neural network
    • F. Kurgollus and B. Sankur, "Image segmentation based on multi-scan constraint satisfaction neural network," Pattern Recogn. Lett. 20, 1553-1563 (1999).
    • (1999) Pattern Recogn. Lett. , vol.20 , pp. 1553-1563
    • Kurgollus, F.1    Sankur, B.2
  • 18
    • 0031916968 scopus 로고    scopus 로고
    • Artificial neural networks for drug vulnerability recognition and dynamic scenarios simulation
    • M. Buscema, M. Intraligi, and R. Bricolo, "Artificial neural networks for drug vulnerability recognition and dynamic scenarios simulation," Substance Use & Misuse 33, 587-623 (1998).
    • (1998) Substance Use & Misuse , vol.33 , pp. 587-623
    • Buscema, M.1    Intraligi, M.2    Bricolo, R.3
  • 19
    • 0031942924 scopus 로고    scopus 로고
    • Use of a constraint satisfaction network model for the evaluation of the methodone treatments of drug addicts
    • G. Massini and L. Shabtay, "Use of a constraint satisfaction network model for the evaluation of the methodone treatments of drug addicts," Substance Use & Misuse 33, 625-656 (1998).
    • (1998) Substance Use & Misuse , vol.33 , pp. 625-656
    • Massini, G.1    Shabtay, L.2
  • 20
    • 0042905151 scopus 로고    scopus 로고
    • Deterministic nonlinear dynamical systems analysis
    • edited by R. M. Golden MIT, Cambridge, MA
    • R. M. Golden, "Deterministic nonlinear dynamical systems analysis," in Mathematical Methods for Neural Network Analysis and Design, edited by R. M. Golden (MIT, Cambridge, MA, 1996), pp. 115-142.
    • (1996) Mathematical Methods for Neural Network Analysis and Design , pp. 115-142
    • Golden, R.M.1
  • 23
    • 0032920606 scopus 로고    scopus 로고
    • Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks
    • J. Y. Lo, J. A. Baker, P. J. Kornguth, and C. E. Floyd, Jr., "Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks," Acad. Radiol. 6, 10-15 (1999).
    • (1999) Acad. Radiol. , vol.6 , pp. 10-15
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Floyd C.E., Jr.4
  • 24
    • 85036440155 scopus 로고    scopus 로고
    • American College of Radiology, Reston, VA
    • American College of Radiology, "Breast Imaging Reporting and Data System," American College of Radiology, Reston, VA (1996).
    • (1996) Breast Imaging Reporting and Data System
  • 26
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Machine Learning 36, 105-139 (1999).
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.