-
1
-
-
0027512684
-
Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
-
Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, and C. E. Metz, "Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer," Radiology 187, 81-87 (1993).
-
(1993)
Radiology
, vol.187
, pp. 81-87
-
-
Wu, Y.1
Giger, M.L.2
K, D.3
Vyborny, C.J.4
Schmidt, R.A.5
Metz, C.E.6
-
2
-
-
0028849805
-
Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
-
H.-P. Chan, S. C. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, "Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network," Med. Phys. 22, 1555-1567 (1995).
-
(1995)
Med. Phys.
, vol.22
, pp. 1555-1567
-
-
Chan, H.-P.1
Lo, S.C.2
Sahiner, B.3
Lam, K.L.4
Helvie, M.A.5
-
3
-
-
0030062375
-
Malignant and benign clustered microcalcifications: Automated feature analysis and classification
-
Y. Jiang, R. M. Nishikawa, D. E. Wolverton, C. E. Metz, M. L. Giger, R. A. Schmidt, C. J. Vyborny, and K. Doi, "Malignant and benign clustered microcalcifications: Automated feature analysis and classification," Radiology 198, 671-678 (1996).
-
(1996)
Radiology
, vol.198
, pp. 671-678
-
-
Jiang, Y.1
Nishikawa, R.M.2
Wolverton, D.E.3
Metz, C.E.4
Giger, M.L.5
Schmidt, R.A.6
Vyborny, C.J.7
K, D.8
-
4
-
-
0030048533
-
Artificial neural network: Improving the quality of breast biopsy recommendations
-
J. A. Baker, P. J. Kornguth, J. Y. Lo, and C. E. Floyd, Jr., "Artificial neural network: Improving the quality of breast biopsy recommendations," Radiology 198, 131-135 (1996).
-
(1996)
Radiology
, vol.198
, pp. 131-135
-
-
Baker, J.A.1
Kornguth, P.J.2
Lo, J.Y.3
Floyd C.E., Jr.4
-
5
-
-
0030944929
-
Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features
-
J. Y. Lo, J. A. Baker, P. J. Kornguth, I. D. Iglehart, and C. E. Floyd, Jr., "Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features," Radiology 203, 159-163 (1997).
-
(1997)
Radiology
, vol.203
, pp. 159-163
-
-
Lo, J.Y.1
Baker, J.A.2
Kornguth, P.J.3
Iglehart, I.D.4
Floyd C.E., Jr.5
-
6
-
-
0033233285
-
Classification of malignant and benign masses based on hybrid ART2/ LDA approach
-
L. Hadjiiski, B. Sahiner B, H.-P. Chan, N. Petrick, and M. A. Helvie, "Classification of malignant and benign masses based on hybrid ART2/ LDA approach," IEEE Trans. Med. Imaging 18, 1178-1187 (1999).
-
(1999)
IEEE Trans. Med. Imaging
, vol.18
, pp. 1178-1187
-
-
Hadjiiski, L.1
Sahiner, B.2
Chan, B.H.-P.3
Petrick, N.4
Helvie, M.A.5
-
7
-
-
0032890770
-
Improving breast cancer diagnosis with computer-aided diagnosis
-
Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Giger, and K. Doi, "Improving breast cancer diagnosis with computer-aided diagnosis," Acad. Radiol. 6, 22-33 (1999).
-
(1999)
Acad. Radiol.
, vol.6
, pp. 22-33
-
-
Jiang, Y.1
Nishikawa, R.M.2
Schmidt, R.A.3
Metz, C.E.4
Giger, M.L.5
Doi, K.6
-
8
-
-
0032872797
-
Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: A ROC study
-
H.-P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E. Wilson, and D. D. Adler, "Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: A ROC study," Radiology 212, 817-827 (1999).
-
(1999)
Radiology
, vol.212
, pp. 817-827
-
-
Chan, H.-P.1
Sahiner, B.2
Helvie, M.A.3
Petrick, N.4
Roubidoux, M.A.5
Wilson, T.E.6
Adler, D.D.7
-
9
-
-
0032895111
-
Selected techniques for data mining in medicine
-
N. Lavrac, "Selected techniques for data mining in medicine," Artif. Intell. Med. 16, 3-23 (1999).
-
(1999)
Artif. Intell. Med.
, vol.16
, pp. 3-23
-
-
Lavrac, N.1
-
10
-
-
0030087643
-
Extracting rules from pruned networks for breast cancer diagnosis
-
R. Setiono, "Extracting rules from pruned networks for breast cancer diagnosis," Artif. Intell. Med. 8, 37-51 (1996).
-
(1996)
Artif. Intell. Med.
, vol.8
, pp. 37-51
-
-
Setiono, R.1
-
11
-
-
0032399390
-
Analysis of hidden representations by greedy clustering
-
R. Setiono and H. Liu, "Analysis of hidden representations by greedy clustering," Connection Science 10, 21-42 (1998).
-
(1998)
Connection Science
, vol.10
, pp. 21-42
-
-
Setiono, R.1
H, L.2
-
12
-
-
0032812327
-
Rule-extraction by backpropagation of polyhedra
-
F. Maine, "Rule-extraction by backpropagation of polyhedra," Neural Networks 12, 717-725 (1999).
-
(1999)
Neural Networks
, vol.12
, pp. 717-725
-
-
Maine, F.1
-
13
-
-
0033754933
-
Breast biopsy: Case-based reasoning computer aid using mammography findings for the decision to biopsy
-
C. E. Floyd, Jr., J. Y. Lo, and G. D. Tourassi, "Breast biopsy: Case-based reasoning computer aid using mammography findings for the decision to biopsy," AJR 175, 1347-1352 (2000).
-
(2000)
AJR
, vol.175
, pp. 1347-1352
-
-
Floyd C.E., Jr.1
Lo, J.Y.2
Tourassi, G.D.3
-
14
-
-
0002331653
-
Constraint satisfaction problems
-
edited by C. T. Leondes Academic, San Diego, CA
-
H. N. Schaller, "Constraint satisfaction problems," in Optimization Algorithms, edited by C. T. Leondes (Academic, San Diego, CA, 1998), pp. 209-248.
-
(1998)
Optimization Algorithms
, pp. 209-248
-
-
Schaller, H.N.1
-
15
-
-
0026138747
-
Medical image segmentation by a constraint satisfaction neural network
-
C. T. Chen, E. C.-K. Tsao, and W. C. Tsao, "Medical image segmentation by a constraint satisfaction neural network," IEEE Trans. Nucl. Sci. 38, 678-686 (1991).
-
(1991)
IEEE Trans. Nucl. Sci.
, vol.38
, pp. 678-686
-
-
Chen, C.T.1
Tsao, E.C.-K.2
Tsao, W.C.3
-
16
-
-
0028463197
-
Segmentation of magnetic-resonance brain images using analog constraint satisfaction neural networks
-
A. J. Worth and D. N. Kennedy, "Segmentation of magnetic-resonance brain images using analog constraint satisfaction neural networks," Image Vis. Comput. 12, 345-354 (1994).
-
(1994)
Image Vis. Comput.
, vol.12
, pp. 345-354
-
-
Worth, A.J.1
Kennedy, D.N.2
-
17
-
-
0033310903
-
Image segmentation based on multi-scan constraint satisfaction neural network
-
F. Kurgollus and B. Sankur, "Image segmentation based on multi-scan constraint satisfaction neural network," Pattern Recogn. Lett. 20, 1553-1563 (1999).
-
(1999)
Pattern Recogn. Lett.
, vol.20
, pp. 1553-1563
-
-
Kurgollus, F.1
Sankur, B.2
-
18
-
-
0031916968
-
Artificial neural networks for drug vulnerability recognition and dynamic scenarios simulation
-
M. Buscema, M. Intraligi, and R. Bricolo, "Artificial neural networks for drug vulnerability recognition and dynamic scenarios simulation," Substance Use & Misuse 33, 587-623 (1998).
-
(1998)
Substance Use & Misuse
, vol.33
, pp. 587-623
-
-
Buscema, M.1
Intraligi, M.2
Bricolo, R.3
-
19
-
-
0031942924
-
Use of a constraint satisfaction network model for the evaluation of the methodone treatments of drug addicts
-
G. Massini and L. Shabtay, "Use of a constraint satisfaction network model for the evaluation of the methodone treatments of drug addicts," Substance Use & Misuse 33, 625-656 (1998).
-
(1998)
Substance Use & Misuse
, vol.33
, pp. 625-656
-
-
Massini, G.1
Shabtay, L.2
-
20
-
-
0042905151
-
Deterministic nonlinear dynamical systems analysis
-
edited by R. M. Golden MIT, Cambridge, MA
-
R. M. Golden, "Deterministic nonlinear dynamical systems analysis," in Mathematical Methods for Neural Network Analysis and Design, edited by R. M. Golden (MIT, Cambridge, MA, 1996), pp. 115-142.
-
(1996)
Mathematical Methods for Neural Network Analysis and Design
, pp. 115-142
-
-
Golden, R.M.1
-
21
-
-
0002271477
-
Schemata and sequential thought processes
-
edited by D. E. Rumelhart and J. L. McClelland MIT, Cambridge, MA
-
D. E. Rumelhart, P. Smolensky, J. L. McClelland, and G. E. Hinton, "Schemata and sequential thought processes," in Parallel Distributed Processing: Explorations in the Microstructures of Cognition (Vol. 2), edited by D. E. Rumelhart and J. L. McClelland (MIT, Cambridge, MA, 1986), pp. 7-75.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructures of Cognition
, vol.2
, pp. 7-75
-
-
Rumelhart, D.E.1
Smolensky, P.2
McClelland, J.L.3
Hinton, G.E.4
-
22
-
-
0003444646
-
Learning internal representations by error propagation
-
edited by D. E. Rumelhart and J. L. McClelland MIT, Cambridge, MA
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," in Parallel Distributed Processing: Explorations in the Microstructures of Cognition (Vol. 2), edited by D. E. Rumelhart and J. L. McClelland (MIT, Cambridge, MA, 1986), pp. 318-362.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructures of Cognition
, vol.2
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
23
-
-
0032920606
-
Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks
-
J. Y. Lo, J. A. Baker, P. J. Kornguth, and C. E. Floyd, Jr., "Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks," Acad. Radiol. 6, 10-15 (1999).
-
(1999)
Acad. Radiol.
, vol.6
, pp. 10-15
-
-
Lo, J.Y.1
Baker, J.A.2
Kornguth, P.J.3
Floyd C.E., Jr.4
-
24
-
-
85036440155
-
-
American College of Radiology, Reston, VA
-
American College of Radiology, "Breast Imaging Reporting and Data System," American College of Radiology, Reston, VA (1996).
-
(1996)
Breast Imaging Reporting and Data System
-
-
-
25
-
-
0041858398
-
Differences in computer aided diagnosis of breast cancer: Masses vs. Calcifications
-
Chicago, IL.
-
M. K. Markey, J. Y. Lo, and C. E. Floyd, Jr., "Differences in computer aided diagnosis of breast cancer: Masses vs. calcifications," presented at the 2000 World Congress on Medical Physics and Biomedical Engineering. Chicago, IL.
-
2000 World Congress on Medical Physics and Biomedical Engineering.
-
-
Markey, M.K.1
Lo, J.Y.2
Floyd C.E., Jr.3
-
26
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Machine Learning 36, 105-139 (1999).
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
|