메뉴 건너뛰기




Volumn 26, Issue 9, 2011, Pages 1061-1071

Self-heating of silicon microwires: Crystallization and thermoelectric effects

Author keywords

Crystal growth; Si; Thermoelectricity

Indexed keywords

BIAS CONDITIONS; CURRENT VOLTAGE; CURRENT-INDUCED CRYSTALLIZATION; DIRECT CURRENT; EMISSION PROFILE; HIGH CURRENT DENSITIES; HIGH TEMPERATURE; MATERIAL PARAMETER; MICRO WIRE; OPTIMUM GEOMETRY; P-TYPE; RESOLIDIFICATION; SELF-HEATING; SIMULATED PROFILE; VOLTAGE PULSE;

EID: 79959474531     PISSN: 08842914     EISSN: None     Source Type: Journal    
DOI: 10.1557/jmr.2011.32     Document Type: Article
Times cited : (39)

References (39)
  • 3
    • 84916076172 scopus 로고
    • Electrical and optical properties of boron doped amorphous silicon films prepared by CVD
    • T. Makino and H. Nakamura: Electrical and optical properties of boron doped amorphous silicon films prepared by CVD. Jpn. J. Appl. Phys. 17, 1897 (1978).
    • (1978) Jpn. J. Appl. Phys. , vol.17 , pp. 1897
    • Makino, T.1    Nakamura, H.2
  • 4
    • 33751122778 scopus 로고
    • Vapor-liquid-solid mechanism of single crystal growth
    • R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
    • (1964) Appl. Phys. Lett. , vol.4 , pp. 89
    • Wagner, R.S.1    Ellis, W.C.2
  • 6
    • 0038161696 scopus 로고    scopus 로고
    • High performance silicon nanowire field effect transistors
    • Y. Cui, Z. Zhong, D. Wang, W.U. Wang, and C.M. Lieber: High performance silicon nanowire field effect transistors. Nano Lett. 3, 149 (2003).
    • (2003) Nano Lett. , vol.3 , pp. 149
    • Cui, Y.1    Zhong, Z.2    Wang, D.3    Wang, W.U.4    Lieber, C.M.5
  • 7
    • 0141786931 scopus 로고    scopus 로고
    • Characterization of low-temperature processed single-crystalline silicon thin-film transistor on glass
    • X. Shi, K. Henttinen, T. Suni, I. Suni, S.S. Lau, and M. Wong: Characterization of low-temperature processed single-crystalline silicon thin-film transistor on glass. IEEE Electron Device Lett. 24, 574 (2003).
    • (2003) IEEE Electron Device Lett. , vol.24 , pp. 574
    • Shi, X.1    Henttinen, K.2    Suni, T.3    Suni, I.4    Lau, S.S.5    Wong, M.6
  • 8
    • 28344443268 scopus 로고    scopus 로고
    • Mobility enhancement of polycrystal-line-si thin-film transistors using nanowire channels by pattern-dependent metal-induced lateral crystallization
    • Y.C. Wu, T.C. Chang, P.T. Liu, Y.C. Wu, C.W. Chou, C.H. Tu, J.C. Lou, and C.Y. Chang: Mobility enhancement of polycrystal-line-Si thin-film transistors using nanowire channels by pattern-dependent metal-induced lateral crystallization. Appl. Phys. Lett. 87, 143504 (2005).
    • (2005) Appl. Phys. Lett. , vol.87 , pp. 143504
    • Wu, Y.C.1    Chang, T.C.2    Liu, P.T.3    Wu, Y.C.4    Chou, C.W.5    Tu, C.H.6    Lou, J.C.7    Chang, C.Y.8
  • 9
    • 33745677493 scopus 로고    scopus 로고
    • High-performance TFTs with si nanowire channels enhanced by metal-induced lateral crystallization
    • C.J. Su, H.C. Lin, and T.Y. Huang: High-performance TFTs with Si nanowire channels enhanced by metal-induced lateral crystallization. Electron Device Lett. IEEE 27, 582 (2006).
    • (2006) Electron Device Lett. IEEE , vol.27 , pp. 582
    • Su, C.J.1    Lin, H.C.2    Huang, T.Y.3
  • 10
    • 42149176666 scopus 로고    scopus 로고
    • Nickel oxide-induced crystallization of silicon for use in thin film transistors with a SiN diffusion filter
    • J.Y. Kim, J.W. Han, J.M. Han, Y.H. Kim, B.Y. Oh, B.Y. Kim, S.K. Lee, and D.S. Seo: Nickel oxide-induced crystallization of silicon for use in thin film transistors with a SiN diffusion filter. Appl. Phys. Lett. 92, 143501 (2008).
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 143501
    • Kim, J.Y.1    Han, J.W.2    Han, J.M.3    Kim, Y.H.4    Oh, B.Y.5    Kim, B.Y.6    Lee, S.K.7    Seo, D.S.8
  • 11
    • 0000897114 scopus 로고    scopus 로고
    • Sequential lateral solidification of thin silicon films on SiO
    • R.S. Sposili and J.S. Im: Sequential lateral solidification of thin silicon films on SiO. Appl. Phys. Lett. 69, 2864 (1996).
    • (1996) Appl. Phys. Lett. , vol.69 , pp. 2864
    • Sposili, R.S.1    Im, J.S.2
  • 12
    • 0031162501 scopus 로고    scopus 로고
    • Single-crystal si films for thin-film transistor devices
    • J.S. Im, R.S. Sposili, and M.A. Crowder: Single-crystal Si films for thin-film transistor devices. Appl. Phys. Lett. 70, 3434 (1997).
    • (1997) Appl. Phys. Lett. , vol.70 , pp. 3434
    • Im, J.S.1    Sposili, R.S.2    Crowder, M.A.3
  • 13
    • 0035873423 scopus 로고    scopus 로고
    • Rapid crystallization of silicon films using electrical-current-induced joule heating
    • DOI 10.1063/1.1367405
    • T. Sameshima, N. Andoh, and H. Takahashi: Rapid crystallization of silicon films using electrical-current-induced joule heating. J. Appl. Phys. 89, 5362 (2001). (Pubitemid 32492110)
    • (2001) Journal of Applied Physics , vol.89 , Issue.10 , pp. 5362
    • Sameshima, T.1    Andoh, N.2    Takahashi, H.3
  • 14
    • 22944488586 scopus 로고    scopus 로고
    • Crystallization of silicon films by rapid joule heating method
    • N. Andoh, T. Sameshima, and K. Kitahara: Crystallization of silicon films by rapid joule heating method. Thin Solid Films 487, 118 (2005).
    • (2005) Thin Solid Films , vol.487 , pp. 118
    • Andoh, N.1    Sameshima, T.2    Kitahara, K.3
  • 15
    • 67649479382 scopus 로고    scopus 로고
    • Melting and crystallization of nanocrystalline silicon microwires through rapid self-heating
    • G. Bakan, A. Cywar, H. Silva, and A. Gokirmak: Melting and crystallization of nanocrystalline silicon microwires through rapid self-heating. Appl. Phys. Lett. 94, 251910 (2009).
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 251910
    • Bakan, G.1    Cywar, A.2    Silva, H.3    Gokirmak, A.4
  • 17
    • 0030577292 scopus 로고    scopus 로고
    • Electrical resistivity and thermopower of liquid ge and si
    • H.S. Schnyders and J.B. Van Zytveld: Electrical resistivity and thermopower of liquid Ge and Si. J. Phys. Condens. Matter 8, 10875 (1996).
    • (1996) J. Phys. Condens. Matter , vol.8 , pp. 10875
    • Schnyders, H.S.1    Van Zytveld, J.B.2
  • 18
    • 0029346165 scopus 로고
    • Temperature dependence of the electrical resistivity of molten silicon
    • H. Sasaki, A. Ikari, K. Terashima, and S. Kimura: Temperature dependence of the electrical resistivity of molten silicon. Jpn. J. Appl. Phys. 34, 3426 (1995).
    • (1995) Jpn. J. Appl. Phys. , vol.34 , pp. 3426
    • Sasaki, H.1    Ikari, A.2    Terashima, K.3    Kimura, S.4
  • 19
    • 77954270712 scopus 로고    scopus 로고
    • Measurements of liquid silicon resistivity on silicon microwires, in semiconductor nanowires-growth, size-dependent properties and applications
    • edited by P.C. McIntyre, J.M. Redwing, V. Schmidt, and S. Gradecak Warrendale, PA
    • G. Bakan, K. Cil, A. Cywar, H. Silva, and A. Gokirmak: Measurements of liquid silicon resistivity on silicon microwires, in Semiconductor Nanowires-Growth, Size-Dependent Properties and Applications, edited by P.C. McIntyre, J.M. Redwing, V. Schmidt, and S. Gradecak (Mater. Res. Soc. Symp. Proc. 1178E, Warrendale, PA, 2009), p. AA06-06.
    • (2009) Mater. Res. Soc. Symp. Proc. , vol.1178 E
    • Bakan, G.1    Cil, K.2    Cywar, A.3    Silva, H.4    Gokirmak, A.5
  • 20
    • 79959488544 scopus 로고    scopus 로고
    • Finite element simulation of filamentation in nanocrystalline silicon films under electrical stress
    • Presented at Boston, MA
    • S. Ayas, G. Bakan, N.E. Williams, A. Gokirmak, and H. Silva: Finite element simulation of filamentation in nanocrystalline silicon films under electrical stress. Presented at the 2010 MRS Fall Meeting, Boston, MA, 2010; (AA17, 64).
    • (2010) The 2010 MRS Fall Meeting , vol.AA17 , pp. 64
    • Ayas, S.1    Bakan, G.2    Williams, N.E.3    Gokirmak, A.4    Silva, H.5
  • 21
    • 79959465570 scopus 로고    scopus 로고
    • Temperature dependent electrical characterization and crystallization of nanocrystalline silicon
    • Presented at San Francisco, CA
    • N.E. Williams, E. Carpena, K. Cil, H. Silva, and A. Gokirmak: Temperature dependent electrical characterization and crystallization of nanocrystalline silicon. Presented at the 2010 MRS Spring Meeting, San Francisco, CA, 2010: (A17.9).
    • (2010) The 2010 MRS Spring Meeting , vol.A17 , pp. 9
    • Williams, N.E.1    Carpena, E.2    Cil, K.3    Silva, H.4    Gokirmak, A.5
  • 24
    • 50149095145 scopus 로고
    • Electrical and optical characteristics of vacuum-sealed polysiliconmicrolamps
    • C.H. Mastrangelo, J.H.J. Yeh, and R.S. Muller: Electrical and optical characteristics of vacuum-sealed polysiliconmicrolamps. IEEE Trans. Electron. Dev. 39, 1363 (1992).
    • (1992) IEEE Trans. Electron. Dev. , vol.39 , pp. 1363
    • Mastrangelo, C.H.1    Yeh, J.H.J.2    Muller, R.S.3
  • 25
    • 0038444573 scopus 로고    scopus 로고
    • Local synthesis of silicon nanowires and carbon nanotubes on microbridges
    • O. Englander, D. Christensen, and L. Lin: Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Appl. Phys. Lett. 82, 4797 (2003).
    • (2003) Appl. Phys. Lett. , vol.82 , pp. 4797
    • Englander, O.1    Christensen, D.2    Lin, L.3
  • 26
    • 33646700253 scopus 로고    scopus 로고
    • Thermography on a suspended microbridge using confocal Raman scattering
    • 05/08
    • A. Jungen, C. Stampfer, and C. Hierold, Thermography on a suspended microbridge using confocal Raman scattering. Appl. Phys. Lett. 88, 191901, 05/08 (2006).
    • (2006) Appl. Phys. Lett. , vol.88 , pp. 191901
    • Jungen, A.1    Stampfer, C.2    Hierold, C.3
  • 32
    • 0031142859 scopus 로고    scopus 로고
    • Test structures to measure the seebeck coefficient of CMOS IC polysilicon
    • M. Von Arx, O. Paul, and H. Baltes: Test structures to measure the Seebeck coefficient of CMOS IC polysilicon. IEEE Trans. Semicond. Manuf. 10, 201 (1997).
    • (1997) IEEE Trans. Semicond. Manuf. , vol.10 , pp. 201
    • Von Arx, M.1    Paul, O.2    Baltes, H.3
  • 33
    • 0000935650 scopus 로고
    • Thermal conductivity, electrical resistivity, and seebeck coefficient of silicon from 100 to 1300° K
    • W. Fulkerson, J.P. Moore, R.K. Williams, R.S. Graves, and D.L. McElroy: Thermal conductivity, electrical resistivity, and seebeck coefficient of silicon from 100 to 1300° K. Phys. Rev. 167, 765 (1968).
    • (1968) Phys. Rev. , vol.167 , pp. 765
    • Fulkerson, W.1    Moore, J.P.2    Williams, R.K.3    Graves, R.S.4    McElroy, D.L.5
  • 34
    • 36149007454 scopus 로고
    • Seebeck effect in silicon
    • T.H. Geballe and G.W. Hull: Seebeck effect in silicon. Phys. Rev. 98, 940 (1955).
    • (1955) Phys. Rev. , vol.98 , pp. 940
    • Geballe, T.H.1    Hull, G.W.2
  • 36
    • 0017537087 scopus 로고
    • Thermoelectric power in phosphorus doped amorphous silicon
    • D.I. Jones, P.G. Le Comber, and W.E. Spear: Thermoelectric power in phosphorus doped amorphous silicon. Philos. Mag. 36, 541 (1977).
    • (1977) Philos. Mag. , vol.36 , pp. 541
    • Jones, D.I.1    Le Comber, P.G.2    Spear, W.E.3
  • 37
    • 5044233938 scopus 로고
    • Heat-flow calculation of pulsed excimer ultraviolet laser's melting of amorphous and crystalline silicon surfaces
    • C. Ong, E. Sin, and H. Tan: Heat-flow calculation of pulsed excimer ultraviolet laser's melting of amorphous and crystalline silicon surfaces. J. Opt. Soc. Am. B 3, 812 (1986).
    • (1986) J. Opt. Soc. Am. B , vol.3 , pp. 812
    • Ong, C.1    Sin, E.2    Tan, H.3
  • 38
    • 0001150263 scopus 로고
    • Spectral emissivity of silicon
    • T. Sato: Spectral emissivity of silicon. Jpn. J. Appl. Phys. 6, 339 (1967).
    • (1967) Jpn. J. Appl. Phys. , vol.6 , pp. 339
    • Sato, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.