-
1
-
-
33846951759
-
Biomass recalcitrance: Engineering plants and enzymes for biofuels production
-
Himmel M, Ding S, Johnson D, Adney W, Nimlos M, et al. 2007. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804-7
-
(2007)
Science
, vol.315
, pp. 804-807
-
-
Himmel, M.1
Ding, S.2
Johnson, D.3
Adney, W.4
Nimlos, M.5
-
2
-
-
76849102772
-
Biofuels and sustainability
-
Solomon BD. 2010. Biofuels and sustainability. Ann. N. Y. Acad. Sci. 1185:119-34
-
(2010)
Ann. N. Y. Acad. Sci.
, vol.1185
, pp. 119-134
-
-
Solomon, B.D.1
-
3
-
-
68149168191
-
Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol
-
Aden A, Foust T. 2009. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535-45
-
(2009)
Cellulose
, vol.16
, pp. 535-545
-
-
Aden, A.1
Foust, T.2
-
4
-
-
77955651657
-
Challenges in scaling up biofuels infrastructure
-
Richard TL. 2010. Challenges in scaling up biofuels infrastructure. Science 329:793-96
-
(2010)
Science
, vol.329
, pp. 793-796
-
-
Richard, T.L.1
-
5
-
-
64749090391
-
Comparative analysis of efficiency, environmental impact, and process economics for mature biomass refining scenarios
-
Laser M, Larson E, Dale B, Wang M, Greene N, Lynd LR. 2009. Comparative analysis of efficiency, environmental impact, and process economics for mature biomass refining scenarios. Biofuels Bioprod. Biorefining 3:247-70
-
(2009)
Biofuels Bioprod. Biorefining
, vol.3
, pp. 247-270
-
-
Laser, M.1
Larson, E.2
Dale, B.3
Wang, M.4
Greene, N.5
Lynd, L.R.6
-
6
-
-
9944252948
-
Features of promising technologies for pretreatment of lignocellulosic biomass
-
DOI 10.1016/j.biortech.2004.06.025, PII S0960852404002536
-
Mosier N, Wyman C, Dale B, Elander R, Lee YY, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:673-86 (Pubitemid 39592889)
-
(2005)
Bioresource Technology
, vol.96
, Issue.6
, pp. 673-686
-
-
Mosier, N.1
Wyman, C.2
Dale, B.3
Elander, R.4
Lee, Y.Y.5
Holtzapple, M.6
Ladisch, M.7
-
8
-
-
34548213824
-
Cellulase digestibility of pretreated biomass is limited by cellulose accessibility
-
DOI 10.1002/bit.21408
-
Jeoh T, Ishizawa CI, Davis MF, Himmel ME, AdneyWS, Johnson DK. 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98:112-22 (Pubitemid 47325828)
-
(2007)
Biotechnology and Bioengineering
, vol.98
, Issue.1
, pp. 112-122
-
-
Jeoh, T.1
Ishizawa, C.I.2
Davis, M.F.3
Himmel, M.E.4
Adney, W.S.5
Johnson, D.K.6
-
9
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi S, Cann AF, ConnorMR, Shen CR, Smith KM, et al. 2008. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10:305-11
-
(2008)
Metab. Eng.
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
Shen, C.R.4
Smith, K.M.5
-
10
-
-
75749125061
-
Microbial production of fatty-acidderived fuels and chemicals from plant biomass
-
Steen EJ, Kang YS, Bokinsky G, Hu ZH, Schirmer A, et al. 2010. Microbial production of fatty-acidderived fuels and chemicals from plant biomass. Nature 463:559-62
-
(2010)
Nature
, vol.463
, pp. 559-562
-
-
Steen, E.J.1
Kang, Y.S.2
Bokinsky, G.3
Hu, Z.H.4
Schirmer, A.5
-
11
-
-
20344372708
-
Chemistry: Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates
-
DOI 10.1126/science.1111166
-
Huber GW, Chheda JN, Barrett CJ, Dumesic JA. 2005. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446-50 (Pubitemid 40791294)
-
(2005)
Science
, vol.308
, Issue.5727
, pp. 1446-1450
-
-
Huber, G.W.1
Chheda, J.N.2
Barrett, C.J.3
Dumesic, J.A.4
-
12
-
-
77649212341
-
Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels
-
Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA. 2010. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110-14
-
(2010)
Science
, vol.327
, pp. 1110-1114
-
-
Bond, J.Q.1
Alonso, D.M.2
Wang, D.3
West, R.M.4
Dumesic, J.A.5
-
13
-
-
27644525170
-
Growth of the plant cell wall
-
DOI 10.1038/nrm1746, PII N1746
-
Cosgrove DJ. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850-61 (Pubitemid 41568734)
-
(2005)
Nature Reviews Molecular Cell Biology
, vol.6
, Issue.11
, pp. 850-861
-
-
Cosgrove, D.J.1
-
14
-
-
43549097333
-
Cell-wall carbohydrates and their modification as a resource for biofuels
-
DOI 10.1111/j.1365-313X.2008.03463.x
-
Pauly M, Keegstra K. 2008. Cell wall carbohydrates and their modifications as a resource for biofuels. Plant J. 54:559-68 (Pubitemid 351678047)
-
(2008)
Plant Journal
, vol.54
, Issue.4
, pp. 559-568
-
-
Pauly, M.1
Keegstra, K.2
-
15
-
-
0000994306
-
Cellulose: The structure slowly unravels
-
O'Sullivan AC. 1997. Cellulose: The structure slowly unravels. Cellulose 4:173-207 (Pubitemid 127508792)
-
(1997)
Cellulose
, vol.4
, Issue.3
, pp. 173-207
-
-
O'Sullivan, A.C.1
-
16
-
-
19944414291
-
Toward a systems approach to understanding plant cell walls
-
DOI 10.1126/science.1102765
-
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, et al. 2004. Toward a systems approach to understanding plant cell walls. Science 306:2206-11 (Pubitemid 40024448)
-
(2004)
Science
, vol.306
, Issue.5705
, pp. 2206-2211
-
-
Somerville, C.1
Bauer, S.2
Brininstool, G.3
Facette, M.4
Hamann, T.5
Milne, J.6
Osborne, E.7
Paredez, A.8
Persson, S.9
Raab, T.10
Vorwerk, S.11
Youngs, H.12
-
17
-
-
0042698363
-
Periodic disorder along ramie cellulose microfibrils
-
DOI 10.1021/bm025772x
-
Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P. 2003. Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013-17 (Pubitemid 36939471)
-
(2003)
Biomacromolecules
, vol.4
, Issue.4
, pp. 1013-1017
-
-
Nishiyama, Y.1
Kim, U.-J.2
Kim, D.-Y.3
Katsumata, K.S.4
May, R.P.5
Langan, P.6
-
18
-
-
70349311574
-
Cellulose hydrolysis in evolving substrate morphologies II: Numerical results and analysis
-
Zhou W, Hao ZQ, Xu Y, Schuttler HB. 2009. Cellulose hydrolysis in evolving substrate morphologies II: Numerical results and analysis. Biotechnol. Bioeng. 104:275-89
-
(2009)
Biotechnol. Bioeng.
, vol.104
, pp. 275-289
-
-
Zhou, W.1
Hao, Z.Q.2
Xu, Y.3
Schuttler, H.B.4
-
19
-
-
0037036704
-
Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction
-
DOI 10.1021/ja0257319
-
Nishiyama Y, Langan P, Chanzy H. 2002. Crystal structure and hydrogen-bonding system in cellulose Iβfrom synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074-82 (Pubitemid 34847668)
-
(2002)
Journal of the American Chemical Society
, vol.124
, Issue.31
, pp. 9074-9082
-
-
Nishiyama, Y.1
Langan, P.2
Chanzy, H.3
-
20
-
-
77349086343
-
Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form
-
Wada M, Ike M, Tokuyasu K. 2010. Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym. Degrad. Stab. 95:543-48
-
(2010)
Polym. Degrad. Stab.
, vol.95
, pp. 543-548
-
-
Wada, M.1
Ike, M.2
Tokuyasu, K.3
-
21
-
-
9744233080
-
Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction
-
Wada M, Chanzy H, NishiyamaY,Langan P. 2004. Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548-55
-
(2004)
Macromolecules
, vol.37
, pp. 8548-8555
-
-
Wada, M.1
Chanzy, H.2
Nishiyama, Y.3
Langan, P.4
-
22
-
-
33947228342
-
I results in efficient hydrolysis by cellobiohydrolase
-
DOI 10.1111/j.1742-4658.2007.05727.x
-
Igarashi K, Wada M, Samejima M. 2007. Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J. 274:1785-92 (Pubitemid 46426914)
-
(2007)
FEBS Journal
, vol.274
, Issue.7
, pp. 1785-1792
-
-
Igarashi, K.1
Wada, M.2
Samejima, M.3
-
23
-
-
0000800218
-
Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII
-
Gardiner ES, Sarko A. 1985. Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can. J. Chem. 63:173-80
-
(1985)
Can. J. Chem.
, vol.63
, pp. 173-180
-
-
Gardiner, E.S.1
Sarko, A.2
-
25
-
-
84981754898
-
Zur kenntnis der chemischen zusammensetzung der pflanzlichen zellmem
-
Schulze E. 1891. Zur Kenntnis der chemischen Zusammensetzung der pflanzlichen Zellmem. Ber. Dtsch. Chem. Ges. 24:2277-87
-
(1891)
Ber. Dtsch. Chem. Ges.
, vol.24
, pp. 2277-2287
-
-
Schulze, E.1
-
26
-
-
33847034509
-
Hemicellulose
-
ed. T Heinze, Berlin/Heidelberg: Springer
-
Ebringerová A, Hromádková Z, Heinze T. 2005. Hemicellulose. In Polysaccharides I: Structure, Characterisation and Use, ed. T Heinze, pp. 1-67. Berlin/Heidelberg: Springer
-
(2005)
Polysaccharides I: Structure, Characterisation and Use
, pp. 1-67
-
-
Ebringerová, A.1
Hromádková, Z.2
Heinze, T.3
-
28
-
-
0000808061
-
Biodegradation of lignin and hemicelluloses
-
ed. C Ratledge, Dordrecht, Netherlands: Kluwer Academic Publishers
-
Jeffries TW. 1994. Biodegradation of lignin and hemicelluloses. In Biochemistry of Microbial Degradation, ed. C Ratledge, pp. 233-77, Dordrecht, Netherlands: Kluwer Academic Publishers
-
(1994)
Biochemistry of Microbial Degradation
, pp. 233-277
-
-
Jeffries, T.W.1
-
29
-
-
18744395820
-
How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies
-
DOI 10.2135/cropsci2004.0191
-
Grabber J. 2005. How do lignin composition, structure, and cross-linking impact degradability? A review of cell wall model studies. Crop Sci. 45:820-31 (Pubitemid 40670262)
-
(2005)
Crop Science
, vol.45
, Issue.3
, pp. 820-831
-
-
Grabber, J.H.1
-
31
-
-
0035800124
-
Approaches to understanding the functional architecture of the plant cell wall
-
DOI 10.1016/S0031-9422(01)00144-3, PII S0031942201001443
-
McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, et al. 2001. Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57:811-21 (Pubitemid 32607030)
-
(2001)
Phytochemistry
, vol.57
, Issue.6
, pp. 811-821
-
-
McCann, M.C.1
Bush, M.2
Milioni, D.3
Sado, P.4
Stacey, N.J.5
Catchpole, G.6
Defernez, M.7
Carpita, N.C.8
Hofte, H.9
Ulvskov, P.10
Wilson, R.H.11
Roberts, K.12
-
33
-
-
0005564927
-
Molecular structure and component integration of secondary cell walls in plants
-
Bidlack J, Malone M, Benson R. 1992. Molecular structure and component integration of secondary cell walls in plants. Proc. Okla. Acad. Sci. 72:51-56
-
(1992)
Proc. Okla. Acad. Sci.
, vol.72
, pp. 51-56
-
-
Bidlack, J.1
Malone, M.2
Benson, R.3
-
34
-
-
0030871786
-
Direct visualization of lignifying secondary wall thickenings in Zinnia elegans cells in culture
-
Nakashima J,Mizuno T, Takabe K, Fujita M, SaikiH. 1997. Direct visualization of lignifying secondary wall thickenings in Zinnia elegans cells in culture. Plant Cell Physiol. 38:818-27 (Pubitemid 27347765)
-
(1997)
Plant and Cell Physiology
, vol.38
, Issue.7
, pp. 818-827
-
-
Nakashima, J.1
Mizuno, T.2
Takabe, K.3
Fujita, M.4
Saiki, H.5
-
35
-
-
33646910903
-
Catalyst transport in corn stover internodes: Elucidating transport mechanisms using Direct Blue-I
-
DOI 10.1385/ABAB:130:1:509
-
Viamajala S, Selig M, Vinzant T, Tucker M, Himmel M, et al. 2006. Catalyst transport in corn stover internodes elucidating transport mechanisms using Direct Blue-I. Appl. Biochem. Biotech. 130:509-27 (Pubitemid 43791480)
-
(2006)
Applied Biochemistry and Biotechnology
, vol.130
, Issue.1-3
, pp. 509-527
-
-
Viamajala, S.1
Selig, M.J.2
Vinzant, T.B.3
Tucker, M.P.4
Himmel, M.E.5
McMillan, J.D.6
Decker, S.R.7
-
37
-
-
33244486953
-
The maize primary cell wall microfibril: A new model derived from direct visualization
-
DOI 10.1021/jf051851z
-
Ding S, Himmel M. 2006. The maize primary cell wall microfibril: A new model derived from direct visualization. J. Agric. Food Chem. 54:597-606 (Pubitemid 43274091)
-
(2006)
Journal of Agricultural and Food Chemistry
, vol.54
, Issue.3
, pp. 597-606
-
-
Ding, S.-Y.1
Himmel, M.E.2
-
38
-
-
0025336499
-
Direct visualization of cross-links in the primary plant cell wall
-
McCann MC,Wells B, Roberts K. 1990. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96:323-34
-
(1990)
J. Cell Sci.
, vol.96
, pp. 323-334
-
-
McCann, M.C.1
Wells, B.2
Roberts, K.3
-
39
-
-
0039547497
-
Determination of the pore size of cell walls of living plant cells
-
Carpita N, Sabularse D, Montezinos D, Delmer D. 1979. Determination of the pore size of cell walls of living plant cells. Science 205:1144-47
-
(1979)
Science
, vol.205
, pp. 1144-1147
-
-
Carpita, N.1
Sabularse, D.2
Montezinos, D.3
Delmer, D.4
-
40
-
-
77949914660
-
Hydroxycinnamates in lignification
-
Ralph J. 2010. Hydroxycinnamates in lignification. Phytochem. Rev. 9:65-83
-
(2010)
Phytochem. Rev.
, vol.9
, pp. 65-83
-
-
Ralph, J.1
-
42
-
-
0000226131
-
The mystery of the lignin-carbohydrate complex: A computational approach
-
Shevchenko SM, Bailey GW. 1996. The mystery of the lignin-carbohydrate complex: A computational approach. J. Mol. Struct. 364:197-208 (Pubitemid 126369690)
-
(1996)
Journal of Molecular Structure: THEOCHEM
, vol.364
, Issue.2-3
, pp. 197-208
-
-
Shevchenko, S.M.1
Bailey, G.W.2
-
43
-
-
0002432128
-
Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature
-
Saeman JF. 1945. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind. Eng. Chem. 37:43-52
-
(1945)
Ind. Eng. Chem.
, vol.37
, pp. 43-52
-
-
Saeman, J.F.1
-
44
-
-
77956506010
-
Breakdown of cell wall nanostructure in dilute acid pretreated biomass
-
Pingali SV, Urban VS, Heller WT, McGaughey J, O'Neill H, et al. 2010. Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11:2329-35
-
(2010)
Biomacromolecules
, vol.11
, pp. 2329-2335
-
-
Pingali, S.V.1
Urban, V.S.2
Heller, W.T.3
McGaughey, J.4
O'Neill, H.5
-
45
-
-
84903079500
-
Thermochemical pretreatment of lignocellulosic biomass
-
ed. K Waldron. Cambridge, UK: Woodhead Publishing
-
Chundawat SPS, Balan V, Sousa L, Dale BE. 2010. Thermochemical pretreatment of lignocellulosic biomass. In Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass, ed. K Waldron. Cambridge, UK: Woodhead Publishing
-
(2010)
Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass
-
-
Chundawat, S.P.S.1
Balan, V.2
Sousa, L.3
Dale, B.E.4
-
46
-
-
66149175811
-
Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies
-
Wyman CE,Dale BE, Elander RT, HoltzappleM, Ladisch MR, et al. 2009. Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol. Prog. 25:333-39
-
(2009)
Biotechnol. Prog.
, vol.25
, pp. 333-339
-
-
Wyman, C.E.1
Dale, B.E.2
Elander, R.T.3
Holtzapple, M.4
Ladisch, M.R.5
-
47
-
-
23844451085
-
Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover
-
DOI 10.1016/j.biortech.2005.01.018, PII S0960852405000714
-
Wyman CE, Dale BE, Elander RT, Holtzapple MT, Ladisch MR, Lee YY. 2005. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour. Technol. 96:2026-32 (Pubitemid 41174572)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 2026-2032
-
-
Wyman, C.E.1
Dale, B.E.2
Elander, R.T.3
Holtzapple, M.4
Ladisch, M.R.5
Lee, Y.Y.6
-
48
-
-
23844467016
-
Process and economic analysis of pretreatment technologies
-
DOI 10.1016/j.biortech.2005.01.017, PII S0960852405000702
-
Eggeman T, Elander RT. 2005. Process and economic analysis of pretreatment technologies. Bioresour. Technol. 96:2019-25 (Pubitemid 41169796)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 2019-2025
-
-
Eggeman, T.1
Elander, R.T.2
-
49
-
-
23844474092
-
Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids
-
DOI 10.1016/j.biortech.2005.01.011, PII S0960852405000647
-
Lloyd TA, Wyman CE. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96:1967-77 (Pubitemid 41174566)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 1967-1977
-
-
Lloyd, T.A.1
Wyman, C.E.2
-
50
-
-
33947430562
-
Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover
-
DOI 10.1016/j.biortech.2006.09.003, PII S0960852406004573
-
Öhgren K, Bura R, Saddler J, Zacchi G. 2007. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98:2503-10 (Pubitemid 46453471)
-
(2007)
Bioresource Technology
, vol.98
, Issue.13
, pp. 2503-2510
-
-
Ohgren, K.1
Bura, R.2
Saddler, J.3
Zacchi, G.4
-
51
-
-
23844499442
-
Optimization of pH controlled liquid hot water pretreatment of corn stover
-
DOI 10.1016/j.biortech.2005.01.013, PII S0960852405000660
-
Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96:1986-93 (Pubitemid 41174568)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 1986-1993
-
-
Mosier, N.1
Hendrickson, R.2
Ho, N.3
Sedlak, M.4
Ladisch, M.R.5
-
52
-
-
23844492843
-
Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose
-
DOI 10.1016/j.biortech.2005.01.012, PII S0960852405000659
-
Liu C, Wyman CE. 2005. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96:1978-85 (Pubitemid 41174567)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 1978-1985
-
-
Liu, C.1
Wyman, C.E.2
-
53
-
-
77954532784
-
Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute-acid based pretreatments
-
Chundawat SPS, Vismeh R, Sharma L, Humpula J, Sousa L, et al. 2010. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute-acid based pretreatments. Bioresour. Technol. 101:8429-38
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 8429-8438
-
-
Chundawat, S.P.S.1
Vismeh, R.2
Sharma, L.3
Humpula, J.4
Sousa, L.5
-
54
-
-
23844533296
-
Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover
-
DOI 10.1016/j.biortech.2005.01.016, PII S0960852405000696
-
Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE. 2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96:2014-18 (Pubitemid 41174571)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 2014-2018
-
-
Teymouri, F.1
Laureano-Perez, L.2
Alizadeh, H.3
Dale, B.E.4
-
55
-
-
23844447370
-
Pretreatment and fractionation of corn stover by ammonia recycle percolation process
-
DOI 10.1016/j.biortech.2005.01.015, PII S0960852405000684
-
Kim TH, Lee YY. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour. Technol. 96:2007-13 (Pubitemid 41174570)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 2007-2013
-
-
Tae, H.K.1
Lee, Y.Y.2
-
56
-
-
77954541584
-
Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide
-
Gupta R, Lee YY. 2010. Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour. Technol. 101:8185-91
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 8185-8191
-
-
Gupta, R.1
Lee, Y.Y.2
-
57
-
-
23844548623
-
Lime pretreatment and enzymatic hydrolysis of corn stover
-
DOI 10.1016/j.biortech.2005.01.014, PII S0960852405000672
-
Kim S, Holtzapple MT. 2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96:1994-2006 (Pubitemid 41174569)
-
(2005)
Bioresource Technology
, vol.96
, Issue.18 SPEC. ISSUE
, pp. 1994-2006
-
-
Kim, S.1
Holtzapple, M.T.2
-
59
-
-
57349151603
-
Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis
-
Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN. 2009. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 139:47-54
-
(2009)
J. Biotechnol.
, vol.139
, pp. 47-54
-
-
Zhao, H.1
Jones, C.L.2
Baker, G.A.3
Xia, S.4
Olubajo, O.5
Person, V.N.6
-
60
-
-
69249127947
-
Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass
-
Singh S, Simmons BA,VogelKP. 2009. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol. Bioeng. 104:68-75
-
(2009)
Biotechnol. Bioeng.
, vol.104
, pp. 68-75
-
-
Singh, S.1
Simmons, B.A.2
Vogel, K.P.3
-
61
-
-
77949873592
-
Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification
-
Li C, Knierim B, Manisseri C, Arora R, Scheller HV, et al. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101:4900-6
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 4900-4906
-
-
Li, C.1
Knierim, B.2
Manisseri, C.3
Arora, R.4
Scheller, H.V.5
-
62
-
-
84904757696
-
Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility
-
ed.TF Liebert, TJ Heinze, KJ Edgar, Washington, D.C.: American Chemical Society
-
Sellin M, Ondruschka B, Stark A. 2010. Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility. In Cellulose Solvents: For Analysis, Shaping and Chemical Modification, ed.TF Liebert, TJ Heinze, KJ Edgar, pp. 121-35. Washington, D.C.: American Chemical Society
-
(2010)
Cellulose Solvents: For Analysis, Shaping and Chemical Modification
, pp. 121-135
-
-
Sellin, M.1
Ondruschka, B.2
Stark, A.3
-
63
-
-
77950193653
-
Understanding the interactions of cellulose with ionic liquids: A molecular dynamics study
-
Liu H, Sale KL, Holmes BM, Simmons BA, Singh S. 2010. Understanding the interactions of cellulose with ionic liquids: A molecular dynamics study. J. Phys. Chem. B 114:4293-301
-
(2010)
J. Phys. Chem. B
, vol.114
, pp. 4293-4301
-
-
Liu, H.1
Sale, K.L.2
Holmes, B.M.3
Simmons, B.A.4
Singh, S.5
-
64
-
-
77953943598
-
Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars
-
Nguyen T-AD, Kim K-R, Han SJ, ChoHY, Kim JW, et al. 2010. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour. Technol. 101:7432-38
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 7432-7438
-
-
Nguyen, T.-A.D.1
Kim, K.-R.2
Han, S.J.3
Cho, H.Y.4
Kim, J.W.5
-
65
-
-
76349088995
-
Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis
-
Datta S, Holmes B, Park JI, Chen Z, Dibble DC, et al. 2010. Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem. 12:338-45
-
(2010)
Green Chem.
, vol.12
, pp. 338-345
-
-
Datta, S.1
Holmes, B.2
Park, J.I.3
Chen, Z.4
Dibble, D.C.5
-
66
-
-
34249824900
-
Fractionating recalcitrant lignocellulose at modest reaction conditions
-
DOI 10.1002/bit.21386
-
Zhang Y-HP, Ding S-Y,Mielenz JR, Cui J-B, Elander RT, et al. 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97:214-23 (Pubitemid 46852918)
-
(2007)
Biotechnology and Bioengineering
, vol.97
, Issue.2
, pp. 214-223
-
-
Zhang, Y.-H.P.1
Ding, S.-Y.2
Mielenz, J.R.3
Cui, J.-B.4
Elander, R.T.5
Laser, M.6
Himmel, M.E.7
McMillan, J.R.8
Lynd, L.R.9
-
67
-
-
67650156115
-
Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility
-
Zhu Z, SathitsuksanohN, Vinzant T, Schell DJ, McMillan JD, Zhang YHP. 2009. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechol. Bioeng. 103:715-24
-
(2009)
Biotechol. Bioeng.
, vol.103
, pp. 715-724
-
-
Zhu, Z.1
Sathitsuksanoh, N.2
Vinzant, T.3
Schell, D.J.4
McMillan, J.D.5
Zhang, Y.H.P.6
-
68
-
-
34247203017
-
Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover
-
DOI 10.1021/jf062131a
-
Ishizawa CI, Davis MF, Schell DF, Johnson DK. 2007. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food Chem. 55:2575-81 (Pubitemid 46623752)
-
(2007)
Journal of Agricultural and Food Chemistry
, vol.55
, Issue.7
, pp. 2575-2581
-
-
Ishizawa, C.I.1
Davis, M.F.2
Schell, D.F.3
Johnson, D.K.4
-
69
-
-
0031811252
-
Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls
-
DOI 10.1002/(SICI)1097-0010(199806) 77:2<193::AID-JSFA25>3.0.CO;2-A
-
Grabber JH, Hatfield RD, Ralph J. 1998. Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J. Sci. Food Agric. 77:193-200 (Pubitemid 28278743)
-
(1998)
Journal of the Science of Food and Agriculture
, vol.77
, Issue.2
, pp. 193-200
-
-
Grabber, J.H.1
Hatfield, R.D.2
Ralph, J.3
-
70
-
-
33745044318
-
Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls
-
Ralph J, Quideau S, Grabber JH, Hatfield RD. 1994. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J. Chem. Soc. Perkin Trans. 1:3485-98
-
(1994)
J. Chem. Soc. Perkin Trans.
, vol.1
, pp. 3485-3498
-
-
Ralph, J.1
Quideau, S.2
Grabber, J.H.3
Hatfield, R.D.4
-
71
-
-
65649127281
-
Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies
-
Kumar R, Mago G, Balan V, Wyman CE. 2009. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100:3948-62
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 3948-3962
-
-
Kumar, R.1
Mago, G.2
Balan, V.3
Wyman, C.E.4
-
72
-
-
0033992592
-
Modeling of countercurrent shrinking-bed reactor in dilute-acid total-hydrolysis of lignocellulosic biomass
-
DOI 10.1016/S0960-8524(99)00053-X, PII S096085249900053X
-
Lee YY, Wu Z, Torget RW. 2000. Modeling of countercurrent shrinking-bed reactor in dilute-acid total-hydrolysis of lignocellulosic biomass. Bioresour. Technol. 71:29-39 (Pubitemid 29423749)
-
(2000)
Bioresource Technology
, vol.71
, Issue.1
, pp. 29-39
-
-
Lee, Y.Y.1
Wu, Z.2
Torget, R.W.3
-
73
-
-
65349190570
-
Redistribution of xylan in maize cell walls during dilute acid pretreatment
-
Brunecky R, Vinzant TB, Porter SE, Donohoe BS, Johnson DK, Himmel ME. 2009. Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnol. Bioeng. 102:1537-43
-
(2009)
Biotechnol. Bioeng.
, vol.102
, pp. 1537-1543
-
-
Brunecky, R.1
Vinzant, T.B.2
Porter, S.E.3
Donohoe, B.S.4
Johnson, D.K.5
Himmel, M.E.6
-
74
-
-
77952420295
-
Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.)
-
Arora R, Manisseri C, Li C, Ong M, Scheller H, et al. 2010. Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). BioEnergy Res. 3:134-45
-
(2010)
BioEnergy Res.
, vol.3
, pp. 134-145
-
-
Arora, R.1
Manisseri, C.2
Li, C.3
Ong, M.4
Scheller, H.5
-
75
-
-
79952421376
-
Multi-scale visualization and characterization of plant cell wall deconstruction during thermochemical pretreatment
-
Chundawat SPS, Donohoe BS, Sousa LdC, Elder T, Agarwal UP, et al. 2011. Multi-scale visualization and characterization of plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 4:973-84
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 973-984
-
-
Chundawat, S.P.S.1
Donohoe, B.S.2
Sousa, L.D.C.3
Elder, T.4
Agarwal, U.P.5
-
76
-
-
56449097178
-
Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment
-
Donohoe B, Decker S, Tucker M, Himmel M, Vinzant T. 2008. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 101:913-25
-
(2008)
Biotechnol. Bioeng.
, vol.101
, pp. 913-925
-
-
Donohoe, B.1
Decker, S.2
Tucker, M.3
Himmel, M.4
Vinzant, T.5
-
77
-
-
77949869822
-
Understanding the impact of ionic liquid pretreatment on eucalyptus
-
Cetinkol OP, Dibble DC, Cheng G, Kent MS, Knierim B, et al. 2010. Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels 1:33-46
-
(2010)
Biofuels
, vol.1
, pp. 33-46
-
-
Cetinkol, O.P.1
Dibble, D.C.2
Cheng, G.3
Kent, M.S.4
Knierim, B.5
-
78
-
-
65549096218
-
Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy
-
Donohoe BS, Selig MJ, Viamajala S, Vinzant TB, Adney WS, Himmel ME. 2009. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotechnol. Bioeng. 103:480-89
-
(2009)
Biotechnol. Bioeng.
, vol.103
, pp. 480-489
-
-
Donohoe, B.S.1
Selig, M.J.2
Viamajala, S.3
Vinzant, T.B.4
Adney, W.S.5
Himmel, M.E.6
-
79
-
-
37149045322
-
Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose
-
DOI 10.1021/bp0702018
-
Selig M, Viamajala S, Decker S, Tucker M, Himmel M, Vinzant T. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23:1333-39 (Pubitemid 350261868)
-
(2007)
Biotechnology Progress
, vol.23
, Issue.6
, pp. 1333-1339
-
-
Selig, M.J.1
Viamajala, S.2
Decker, S.R.3
Tucker, M.P.4
Himmel, M.E.5
Vinzant, T.B.6
-
80
-
-
75149179024
-
Solution-state 2DNMRof ball-milled plant cell wall gels in DMSO-d6/pyridined5
-
KimH, Ralph J. 2010. Solution-state 2DNMRof ball-milled plant cell wall gels in DMSO-d6/pyridined5. Org. Biomol. Chem. 8:576-91
-
(2010)
Org. Biomol. Chem.
, vol.8
, pp. 576-591
-
-
Kim, H.1
Ralph, J.2
-
81
-
-
67749104732
-
Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis
-
Haas TJ, Nimlos MR, Donohoe BS. 2009. Real-time and post-reaction microscopic structural analysis of biomass undergoing pyrolysis. Energy Fuels 23:3810-17
-
(2009)
Energy Fuels
, vol.23
, pp. 3810-3817
-
-
Haas, T.J.1
Nimlos, M.R.2
Donohoe, B.S.3
-
82
-
-
77952511855
-
Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance
-
Park S, Baker J, Himmel M, Parilla P, Johnson D. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3:10
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 10
-
-
Park, S.1
Baker, J.2
Himmel, M.3
Parilla, P.4
Johnson, D.5
-
83
-
-
77949844116
-
Isolation of cellulolytic enzyme lignin from wood preswollen/dissolved in dimethyl sulfoxide/N-methylimidazole
-
Zhang A, Lu F, Sun R-C, Ralph J. 2010. Isolation of cellulolytic enzyme lignin from wood preswollen/dissolved in dimethyl sulfoxide/N-methylimidazole. J. Agric. Food Chem. 58:3446-50
-
(2010)
J. Agric. Food Chem.
, vol.58
, pp. 3446-3450
-
-
Zhang, A.1
Lu, F.2
Sun, R.-C.3
Ralph, J.4
-
84
-
-
0021461840
-
Effect of ferric tartrate/sodium hydroxide solvent pretreatment on enzyme hydrolysis of cellulose in corn residue
-
Hamilton TJ, Dale BE, Ladisch MR, Tsao GT. 1984. Effect of ferric tartrate/sodium hydroxide solvent pretreatment on enzyme hydrolysis of cellulose in corn residue. Biotechnol. Bioeng. 26:781-87 (Pubitemid 14063347)
-
(1984)
Biotechnology and Bioengineering
, vol.26
, Issue.7
, pp. 781-787
-
-
Hamilton, T.J.1
Dale, B.E.2
Ladisch, M.R.3
Tsao, G.T.4
-
85
-
-
33845274478
-
Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step
-
DOI 10.1002/bit.21047
-
Dadi AP, Varanasi S, Schall CA. 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95:904-10 (Pubitemid 44863208)
-
(2006)
Biotechnology and Bioengineering
, vol.95
, Issue.5
, pp. 904-910
-
-
Dadi, A.P.1
Varanasi, S.2
Schall, C.A.3
-
86
-
-
77952589074
-
Glucose reversion reaction kinetics
-
PilathHM, Nimlos MR,Mittal A,HimmelME, Johnson DK. 2010. Glucose reversion reaction kinetics. J. Agric. Food Chem. 58:6131-40
-
(2010)
J. Agric. Food Chem.
, vol.58
, pp. 6131-6140
-
-
Pilath, H.M.1
Nimlos, M.R.2
Mittal, A.3
Himmel, M.E.4
Johnson, D.K.5
-
87
-
-
0036714783
-
Microbial cellulose utilization: Fundamentals and biotechnology
-
DOI 10.1128/MMBR.66.3.506-577.2002
-
Lynd LR,Weimer PJ, van Zyl W, Pretorius IS. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506-77 (Pubitemid 35005827)
-
(2002)
Microbiology and Molecular Biology Reviews
, vol.66
, Issue.3
, pp. 506-577
-
-
Lynd, L.R.1
Weimer, P.J.2
Van Zyl, W.H.3
Pretorius, I.S.4
-
88
-
-
4143139469
-
The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides
-
DOI 10.1146/annurev.micro.57.030502.091022
-
Bayer EA, Belaich JP, Shoham Y, Lamed R. 2004. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521-54 (Pubitemid 39551996)
-
(2004)
Annual Review of Microbiology
, vol.58
, pp. 521-554
-
-
Bayer, E.A.1
Belaich, J.-P.2
Shoham, Y.3
Lamed, R.4
-
90
-
-
77956472829
-
Hypocrea jecorina Cel6A protein engineering
-
Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR, et al. 2010. Hypocrea jecorina Cel6A protein engineering. Biotechnol. Biofuels 3:20
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 20
-
-
Lantz, S.E.1
Goedegebuur, F.2
Hommes, R.3
Kaper, T.4
Kelemen, B.R.5
-
91
-
-
65249175725
-
A family of thermostable fungal cellulases created by structure-guided recombination
-
Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, et al. 2009. A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl. Acad. Sci. USA 106:5610-15
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 5610-5615
-
-
Heinzelman, P.1
Snow, C.D.2
Wu, I.3
Nguyen, C.4
Villalobos, A.5
-
92
-
-
77950948151
-
Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family
-
Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen J-C, et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry 49:3305-16
-
(2010)
Biochemistry
, vol.49
, pp. 3305-3316
-
-
Harris, P.V.1
Welner, D.2
McFarland, K.C.3
Re, E.4
Navarro Poulsen, J.-C.5
-
93
-
-
0017221817
-
History of cellulase program at US army natick development center
-
Reese E. 1976. History of cellulase program at US Army Natick Development Center. Proc. Biotechnol. Bioeng. Symp. 6:9-20
-
(1976)
Proc. Biotechnol. Bioeng. Symp.
, vol.6
, pp. 9-20
-
-
Reese, E.1
-
94
-
-
43449098828
-
Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)
-
DOI 10.1038/nbt1403, PII NBT1403
-
Martinez D, BerkaRM, HenrissatB, SaloheimoM,Arvas M, et al. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26:553-60 (Pubitemid 351668043)
-
(2008)
Nature Biotechnology
, vol.26
, Issue.5
, pp. 553-560
-
-
Martinez, D.1
Berka, R.M.2
Henrissat, B.3
Saloheimo, M.4
Arvas, M.5
Baker, S.E.6
Chapman, J.7
Chertkov, O.8
Coutinho, P.M.9
Cullen, D.10
Danchin, E.G.J.11
Grigoriev, I.V.12
Harris, P.13
Jackson, M.14
Kubicek, C.P.15
Han, C.S.16
Ho, I.17
Larrondo, L.F.18
De Leon, A.L.19
Magnuson, J.K.20
Merino, S.21
Misra, M.22
Nelson, B.23
Putnam, N.24
Robbertse, B.25
Salamov, A.A.26
Schmoll, M.27
Terry, A.28
Thayer, N.29
Westerholm-Parvinen, A.30
Schoch, C.L.31
Yao, J.32
Barbote, R.33
Nelson, M.A.34
Detter, C.35
Bruce, D.36
Kuske, C.R.37
Xie, G.38
Richardson, P.39
Rokhsar, D.S.40
Lucas, S.M.41
Rubin, E.M.42
Dunn-Coleman, N.43
Ward, M.44
Brettin, T.S.45
more..
-
95
-
-
0032537565
-
Tryptophan 272: An essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A
-
DOI 10.1016/S0014-5793(98)00596-1, PII S0014579398005961
-
Koivula A, Kinnari T, Harjunpaa V, Ruohonen L, Teleman A, et al. 1998. Tryptophan 272: An essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett. 429:341-46 (Pubitemid 28300388)
-
(1998)
FEBS Letters
, vol.429
, Issue.3
, pp. 341-346
-
-
Koivula, A.1
Kinnari, T.2
Harjunpaa, V.3
Ruohonen, L.4
Teleman, A.5
Drakenberg, T.6
Rouvinen, J.7
Jones, T.A.8
Teeri, T.T.9
-
96
-
-
0142106377
-
Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D
-
DOI 10.1016/S0022-2836(03)00881-7
-
von Ossowski I, Stahlberg J, Koivula A, Piens K, Becker D, et al. 2003. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. J. Mol. Biol. 333:817-29 (Pubitemid 37268020)
-
(2003)
Journal of Molecular Biology
, vol.333
, Issue.4
, pp. 817-829
-
-
Von Ossowski, I.1
Stahlberg, J.2
Koivula, A.3
Piens, K.4
Becker, D.5
Boer, H.6
Harle, R.7
Harris, M.8
Divne, C.9
Mahdi, S.10
Zhao, Y.11
Driguez, H.12
Claeyssens, M.13
Sinnott, M.L.14
Teeri, T.T.15
-
97
-
-
0037189899
-
The active site of cellobiohydrolase Cel6A from Trichoderma reesei: The roles of aspartic acids D221 and D175
-
DOI 10.1021/ja012659q
-
Koivula A, Ruohonen L, Wohlfahrt G, Reinikainen T, Teeri TT, et al. 2002. The active site of cellobiohydrolase Cel6A from Trichoderma reesei: The roles of aspartic acids D221 and D175. J. Am. Chem. Soc. 124:10015-24 (Pubitemid 34919737)
-
(2002)
Journal of the American Chemical Society
, vol.124
, Issue.34
, pp. 10015-10024
-
-
Koivula, A.1
Ruohonen, L.2
Wohlfahrt, G.3
Reinikainen, T.4
Teeri, T.T.5
Piens, K.6
Claeyssens, M.7
Weber, M.8
Vasella, A.9
Becker, D.10
Sinnott, M.L.11
Zou, J.-Y.12
Kleywegt, G.J.13
Szardenings, M.14
Stahlberg, J.15
Jones, T.A.16
-
98
-
-
77956642470
-
Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization
-
Barnett CB, Wilkinson KA, Naidoo KJ. 2010. Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization. J. Am. Chem. Soc. 132:12800-3
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 12800-12803
-
-
Barnett, C.B.1
Wilkinson, K.A.2
Naidoo, K.J.3
-
100
-
-
70350351556
-
SCHEMArecombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability
-
Heinzelman P, SnowCD, SmithMA, Yu XL,Kannan A, et al. 2009.SCHEMArecombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J. Biol. Chem. 284:26229-33
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 26229-26233
-
-
Heinzelman, P.1
Snow, C.D.2
Smith, M.A.3
Yu, X.L.4
Kannan, A.5
-
101
-
-
0029119131
-
The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution
-
Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G. 1995. The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Lett. 372:96-98
-
(1995)
FEBS Lett.
, vol.372
, pp. 96-98
-
-
Linder, M.1
Lindeberg, G.2
Reinikainen, T.3
Teeri, T.T.4
Pettersson, G.5
-
102
-
-
0025182502
-
Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei
-
Rouvinen J, Bergfors T, Teeri T, Knowles JKC, Jones TA. 1990. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380-86
-
(1990)
Science
, vol.249
, pp. 380-386
-
-
Rouvinen, J.1
Bergfors, T.2
Teeri, T.3
Knowles, J.K.C.4
Jones, T.A.5
-
103
-
-
68149155524
-
Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis
-
Adney WS, Jeoh T, Beckham GT, Chou YC, Baker JO, et al. 2009. Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose 16:699-709
-
(2009)
Cellulose
, vol.16
, pp. 699-709
-
-
Adney, W.S.1
Jeoh, T.2
Beckham, G.T.3
Chou, Y.C.4
Baker, J.O.5
-
104
-
-
0345676498
-
High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei
-
DOI 10.1006/jmbi.1997.1437
-
DivneC, Stahlberg J, Teeri TT, Jones TA. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275:309-25 (Pubitemid 28030006)
-
(1998)
Journal of Molecular Biology
, vol.275
, Issue.2
, pp. 309-325
-
-
Divne, C.1
Stahlberg, J.2
Teeri, T.T.3
Jones, T.A.4
-
105
-
-
0032528621
-
Moditied glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei
-
DOI 10.1046/j.1432-1327.1998.2560119.x
-
HarrisonMJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, et al. 1998. Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur. J. Biochem. 256:119-27 (Pubitemid 28399103)
-
(1998)
European Journal of Biochemistry
, vol.256
, Issue.1
, pp. 119-127
-
-
Harrison, M.J.1
Nouwens, A.S.2
Jardine, D.R.3
Zachara, N.E.4
Gooley, A.A.5
Nevalainen, H.6
Packer, N.H.7
-
106
-
-
52049106382
-
The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution
-
Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M. 2008. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J. Mol. Biol. 383:144-54
-
(2008)
J. Mol. Biol.
, vol.383
, pp. 144-154
-
-
Karkehabadi, S.1
Hansson, H.2
Kim, S.3
Piens, K.4
Mitchinson, C.5
Sandgren, M.6
-
107
-
-
0031587296
-
The crystal structure of the catalytic core domain of endoglucanase I from trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes
-
DOI 10.1006/jmbi.1997.1243
-
Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, et al. 1997. The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes. J. Mol. Biol. 272:383-97 (Pubitemid 27410052)
-
(1997)
Journal of Molecular Biology
, vol.272
, Issue.3
, pp. 383-397
-
-
Kleywegt, G.J.1
Zou, J.-Y.2
Divne, C.3
Davies, G.J.4
Sinning, I.5
Stahlberg, J.6
Reinikainen, T.7
Srisodsuk, M.8
Teeri, T.T.9
Jones, T.A.10
-
108
-
-
0024962351
-
Determination of the threedimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing
-
Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, et al. 1989. Determination of the threedimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28:7241-57
-
(1989)
Biochemistry
, vol.28
, pp. 7241-7257
-
-
Kraulis, P.J.1
Clore, G.M.2
Nilges, M.3
Jones, T.A.4
Pettersson, G.5
-
109
-
-
0029861144
-
The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose
-
DOI 10.1073/pnas.93.22.12251
-
Linder M, Teeri TT. 1996. The cellulose-binding domain of themajor cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc. Natl. Acad. Sci. USA 93:12251-55 (Pubitemid 26367128)
-
(1996)
Proceedings of the National Academy of Sciences of the United States of America
, vol.93
, Issue.22
, pp. 12251-12255
-
-
Linder, M.1
Teeri, T.T.2
-
110
-
-
0027372765
-
Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose
-
Srisodsuk M, Reinikainen T, Penttila M, Teeri TT. 1993. Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interactionwith crystalline cellulose. J. Biol.Chem. 268:20756-61 (Pubitemid 23292244)
-
(1993)
Journal of Biological Chemistry
, vol.268
, Issue.28
, pp. 20756-20761
-
-
Srisodsuk, M.1
Reinikainen, T.2
Penttila, M.3
Teeri, T.T.4
-
111
-
-
47049095366
-
Implications of cellobiohydrolase glycosylation for use in biomass conversion
-
Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS. 2008. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels 1:10
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 10
-
-
Jeoh, T.1
Michener, W.2
Himmel, M.E.3
Decker, S.R.4
Adney, W.S.5
-
112
-
-
1942486976
-
Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Ce17A
-
DOI 10.1093/glycob/cwh080
-
Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M. 2004. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14:713-24 (Pubitemid 39161978)
-
(2004)
Glycobiology
, vol.14
, Issue.8
, pp. 713-724
-
-
Stals, I.1
Sandra, K.2
Geysens, S.3
Contreras, R.4
Van Beeumen, J.5
Claeyssens, M.6
-
113
-
-
77955576397
-
Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis
-
Santa-Maria M, Jeoh T. 2010. Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000-7
-
(2010)
Biomacromolecules
, vol.11
, pp. 2000-2007
-
-
Santa-Maria, M.1
Jeoh, T.2
-
114
-
-
76249113333
-
Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase
-
Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, et al. 2010. Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. J. Phys. Chem. B 114:1447-53
-
(2010)
J. Phys. Chem. B
, vol.114
, pp. 1447-1453
-
-
Beckham, G.T.1
Matthews, J.F.2
Bomble, Y.J.3
Bu, L.4
Adney, W.S.5
-
115
-
-
68149156908
-
The energy landscape for the interaction of the Family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic linkages
-
Bu L, Beckham GT, Crowley MF, Chang CH, Matthews JF, et al. 2009. The energy landscape for the interaction of the Family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic linkages. J. Phys. Chem. B 113:10994-1002
-
(2009)
J. Phys. Chem. B
, vol.113
, pp. 10994-11002
-
-
Bu, L.1
Beckham, G.T.2
Crowley, M.F.3
Chang, C.H.4
Matthews, J.F.5
-
116
-
-
4744368323
-
Carbohydrate-binding modules: Fine-tuning polysaccharide recognition
-
DOI 10.1042/BJ20040892
-
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 2004. Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem. J. 382:769-81 (Pubitemid 39312891)
-
(2004)
Biochemical Journal
, vol.382
, Issue.3
, pp. 769-781
-
-
Boraston, A.B.1
Bolam, D.N.2
Gilbert, H.J.3
Davies, G.J.4
-
117
-
-
0037457955
-
The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules
-
DOI 10.1073/pnas.212651999
-
Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT. 2003. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc. Natl. Acad. Sci. USA 100:484-89 (Pubitemid 36126077)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.2
, pp. 484-489
-
-
Lehtio, J.1
Sugiyama, J.2
Gustavsson, M.3
Fransson, L.4
Linder, M.5
Teeri, T.T.6
-
118
-
-
0344443362
-
Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-ray and Neutron Fiber Diffraction
-
DOI 10.1021/ja037055w
-
Nishiyama Y, Sugiyama J, Chanzy H, Langan P. 2003. Crystal structure and hydrogen bonding system in cellulose 1a from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125:14300-6 (Pubitemid 37452368)
-
(2003)
Journal of the American Chemical Society
, vol.125
, Issue.47
, pp. 14300-14306
-
-
Nishiyama, Y.1
Sugiyama, J.2
Chanzy, H.3
Langan, P.4
-
119
-
-
0029965579
-
Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven
-
DOI 10.1073/pnas.93.22.12229
-
Creagh AL, Ong E, Jervis E, Kilburn DG, Haynes CA. 1996. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc. Natl. Acad. Sci. USA 93:12229-34 (Pubitemid 26367124)
-
(1996)
Proceedings of the National Academy of Sciences of the United States of America
, vol.93
, Issue.22
, pp. 12229-12234
-
-
Creagh, A.L.1
Ong, E.2
Jervis, E.3
Kilburn, D.G.4
Haynes, C.A.5
-
120
-
-
36849067496
-
Correlation between cellulose binding and activity of cellulose-binding domain mutants of Humicola grisea cellobiohydrolase 1
-
DOI 10.1016/j.febslet.2007.11.068, PII S0014579307012227
-
Takashima S,Ohno M, Hidaka M, Nakamura A, Masaki H. 2007. Correlation between cellulose binding and activity of cellulose-binding domain mutants of Humicola grisea cellobiohydrolase 1. FEBS Lett. 581:5891-96 (Pubitemid 50009359)
-
(2007)
FEBS Letters
, vol.581
, Issue.30
, pp. 5891-5896
-
-
Takashima, S.1
Ohno, M.2
Hidaka, M.3
Nakamura, A.4
Masaki, H.5
Uozumi, T.6
-
121
-
-
0034641715
-
Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose
-
Carrard G, Koivula A, Soderlund H, Beguin P. 2000. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. USA 97:10342-47
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 10342-10347
-
-
Carrard, G.1
Koivula, A.2
Soderlund, H.3
Beguin, P.4
-
122
-
-
63549137273
-
Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose
-
Kim ES, LeeHJ, Bang WG,Choi IG, KimKH. 2009. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 102:1342-53
-
(2009)
Biotechnol. Bioeng.
, vol.102
, pp. 1342-1353
-
-
Kim, E.S.1
Lee, H.J.2
Bang, W.G.3
Choi, I.G.4
Kim, K.H.5
-
123
-
-
0036046037
-
Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials
-
DOI 10.1046/j.1432-1033.2002.03095.x
-
Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, et al. 2002. Swollenin, a Trichoderma reesei proteinwith sequence similarity to the plant expansins, exhibits disruption activity on cellulosicmaterials. Eur. J. Biochem. 269:4202-11 (Pubitemid 35026007)
-
(2002)
European Journal of Biochemistry
, vol.269
, Issue.17
, pp. 4202-4211
-
-
Saloheimo, M.1
Paloheimo, M.2
Hakola, S.3
Pere, J.4
Swanson, B.5
Nyyssonen, E.6
Bhatia, A.7
Ward, M.8
Penttila, M.9
-
124
-
-
0026349480
-
Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase
-
DinN,Gilkes NR, Tekant B, Miller RC Jr, Warren RAJ, Kilburn DG. 1991. Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nat. Biotechnol. 9:1096-99
-
(1991)
Nat. Biotechnol.
, vol.9
, pp. 1096-1099
-
-
Din, N.1
Gilkes, N.R.2
Tekant, B.3
Miller Jr., R.C.4
Warren, R.A.J.5
Kilburn, D.G.6
-
125
-
-
23344446196
-
The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation
-
DOI 10.1074/jbc.M504468200
-
Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. 2005. The non-catalytic chitinbinding protein CBP21 from Serratia marcescens is essential for chitin degradation. J. Biol. Chem. 280:28492-97 (Pubitemid 41105749)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.31
, pp. 28492-28497
-
-
Vaaje-Kolstad, G.1
Horn, S.J.2
Van Aalten, D.M.F.3
Synstad, B.4
Eijsink, V.G.H.5
-
126
-
-
34347381336
-
Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface
-
DOI 10.1093/protein/gzm010
-
Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, et al. 2007. Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Prot. Eng. Des. Select. 20:179-87 (Pubitemid 351321299)
-
(2007)
Protein Engineering, Design and Selection
, vol.20
, Issue.4
, pp. 179-187
-
-
Nimlos, M.R.1
Matthews, J.F.2
Crowley, M.F.3
Walker, R.C.4
Chukkapalli, G.5
Brady, J.W.6
Adney, W.S.7
Cleary, J.M.8
Zhong, L.9
Himmel, M.E.10
-
127
-
-
73649106924
-
High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose
-
Igarashi K, Koivula A, WadaM, Kimura S, Penttila M, Samejima M. 2009. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J. Biol. Chem. 284:36186-90
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 36186-36190
-
-
Igarashi, K.1
Koivula, A.2
Wada, M.3
Kimura, S.4
Penttila, M.5
Samejima, M.6
-
128
-
-
70350493135
-
Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B
-
Vuong TV, Wilson DB. 2009. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl. Environ. Microbiol. 75:6655-61
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 6655-6661
-
-
Vuong, T.V.1
Wilson, D.B.2
-
129
-
-
33845321374
-
Cost and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides
-
DOI 10.1073/pnas.0608909103
-
Horn SJ, Sikorski P, Cederkvist JB, Vaaje-KolstadG, Sorlie M, et al. 2006. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc. Natl. Acad. Sci. USA 103:18089-94 (Pubitemid 44871617)
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.48
, pp. 18089-18094
-
-
Horn, S.J.1
Sikorski, P.2
Cederkvist, J.B.3
Vaaje-Kolstad, G.4
Sorlie, M.5
Synstad, B.6
Vriend, G.7
Varum, K.M.8
Eijsink, V.G.H.9
-
130
-
-
67449088829
-
Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency
-
Zakariassen H, Aam BB, Horn SJ, Varum KM, Sorlie M, Eijsink VGH. 2009. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J. Biol. Chem. 284:10610-17
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 10610-1017
-
-
Zakariassen, H.1
Aam, B.B.2
Horn, S.J.3
Varum, K.M.4
Sorlie, M.5
Eijsink, V.G.H.6
-
131
-
-
33748584863
-
Mechanisms and free energies of enzymatic reactions
-
DOI 10.1021/cr050293k
-
Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG. 2006. Mechanisms and free energies of enzymatic reactions. Chem. Rev. 106:3188-209 (Pubitemid 44376932)
-
(2006)
Chemical Reviews
, vol.106
, Issue.8
, pp. 3188-3209
-
-
Gao, J.1
Ma, S.2
Major, D.T.3
Nam, K.4
Pu, J.5
Truhlar, D.G.6
-
132
-
-
65249124122
-
Computations of standard binding free energies with molecular dynamics simulations
-
Deng Y, Roux B. 2009. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B 113:2234-46
-
(2009)
J. Phys. Chem. B
, vol.113
, pp. 2234-2246
-
-
Deng, Y.1
Roux, B.2
-
133
-
-
2542418037
-
Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate
-
DOI 10.1002/bit.10838
-
Gruno M, Valjamae P, Pettersson G, Johansson G. 2004. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol. Bioeng. 86:503-11 (Pubitemid 38679768)
-
(2004)
Biotechnology and Bioengineering
, vol.86
, Issue.5
, pp. 503-511
-
-
Gruno, M.1
Valjamae, P.2
Pettersson, G.3
Johansson, G.4
-
134
-
-
34547354279
-
Extensions to the likelihood maximization approach for finding reaction coordinates
-
Peters B, BeckhamGT, Trout BL. 2007. Extensions to the likelihood maximization approach for finding reaction coordinates. J. Chem. Phys. 127:034109
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 034109
-
-
Peters, B.1
Beckham, G.T.2
Trout, B.L.3
-
135
-
-
78649852734
-
TheO-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein
-
BeckhamGT, Bomble YJ, Matthews JF, ReschMG, Yarbrough JM, et al. 2010. TheO-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys. J. 99(11):3773-81
-
(2010)
Biophys. J.
, vol.99
, Issue.11
, pp. 3773-3781
-
-
Beckham, G.T.1
Bomble, Y.J.2
Matthews, J.F.3
Resch, M.G.4
Yarbrough, J.M.5
-
136
-
-
10844286172
-
Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems
-
DOI 10.1002/bit.20282
-
Zhang YHP, Lynd LR. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 88:797-824 (Pubitemid 40003769)
-
(2004)
Biotechnology and Bioengineering
, vol.88
, Issue.7
, pp. 797-824
-
-
Zhang, Y.-H.P.1
Lynd, L.R.2
-
137
-
-
0033982883
-
A model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid-liquid systems
-
DOI 10.1016/S1369-703X(99)00049-2, PII S1369703X99000492
-
Movagarnejad K, Sohrabi M, Kaghazchi T, Vahabzadeh F. 2000. A model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid-liquid systems. Biochem. Eng. J. 4:197-206 (Pubitemid 30020219)
-
(2000)
Biochemical Engineering Journal
, vol.4
, Issue.3
, pp. 197-206
-
-
Movagarnejad, K.1
Sohrabi, M.2
Kaghazchi, T.3
Vahabzadeh, F.4
-
138
-
-
70349991285
-
Modeling cellulase kinetics on lignocellulosic substrates
-
Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS. 2009. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol. Adv. 27:833-48
-
(2009)
Biotechnol. Adv.
, vol.27
, pp. 833-848
-
-
Bansal, P.1
Hall, M.2
Realff, M.J.3
Lee, J.H.4
Bommarius, A.S.5
-
139
-
-
33746879626
-
A functionally based model for hydrolysis of cellulose by fungal cellulase
-
DOI 10.1002/bit.20906
-
Zhang YHP, Lynd LR. 2006. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol. Bioeng. 94:888-98 (Pubitemid 44186896)
-
(2006)
Biotechnology and Bioengineering
, vol.94
, Issue.5
, pp. 888-898
-
-
Zhang, Y.-H.P.1
Lynd, L.R.2
-
140
-
-
77955691535
-
Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis
-
Jalak J, Valjamae P. 2010. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol. Bioeng. 106:871-83
-
(2010)
Biotechnol. Bioeng.
, vol.106
, pp. 871-883
-
-
Jalak, J.1
Valjamae, P.2
-
141
-
-
33746121105
-
Outlook for cellulase improvement: Screening and selection strategies
-
DOI 10.1016/j.biotechadv.2006.03.003, PII S0734975006000413
-
ZhangYHP,HimmelME, Mielenz JR. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24:452-81 (Pubitemid 44082013)
-
(2006)
Biotechnology Advances
, vol.24
, Issue.5
, pp. 452-481
-
-
Percival Zhang, Y.-H.1
Himmel, M.E.2
Mielenz, J.R.3
-
142
-
-
18244373419
-
Computational thermostabilization of an enzyme
-
DOI 10.1126/science.1107387
-
Korkegian A, Black ME, Baker D, Stoddard BL. 2005. Computational thermostabilization of an enzyme. Science 308:857-60 (Pubitemid 40629266)
-
(2005)
Science
, vol.308
, Issue.5723
, pp. 857-860
-
-
Korkegian, A.1
Black, M.E.2
Baker, D.3
Stoddard, B.L.4
-
143
-
-
33748164748
-
Chemical Technologies for Probing Glycans
-
DOI 10.1016/j.cell.2006.08.017, PII S0092867406010841
-
Prescher JA, Bertozzi CR. 2006. Chemical technologies for probing glycans. Cell 126:851-54 (Pubitemid 44310782)
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 851-854
-
-
Prescher, J.A.1
Bertozzi, C.R.2
-
144
-
-
25844505728
-
Consolidated bioprocessing of cellulosic biomass: An update
-
DOI 10.1016/j.copbio.2005.08.009, PII S0958166905001369, Tissue and Cell Engineering/Biochemical Engineering
-
Lynd LR, van Zyl WH, McBride JE, Laser M. 2005. Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 16:577-83 (Pubitemid 41393839)
-
(2005)
Current Opinion in Biotechnology
, vol.16
, Issue.5
, pp. 577-583
-
-
Lynd, L.R.1
Van Zyl, W.H.2
McBride, J.E.3
Laser, M.4
-
145
-
-
60849102202
-
Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST)
-
Lau MW, Dale BE. 2009. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc. Natl. Acad. Sci. USA 106:1368-73
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 1368-1373
-
-
Lau, M.W.1
Dale, B.E.2
-
146
-
-
74049138742
-
The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: A comparative evaluation between ammonia fiber expansion and dilute acid pretreatment
-
Lau M, Gunawan C, Dale B. 2009. The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: A comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol. Biofuels 2:30
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 30
-
-
Lau, M.1
Gunawan, C.2
Dale, B.3
-
147
-
-
53049083876
-
Metabolic engineering for advanced biofuels production from Escherichia coli
-
Atsumi S, Liao JC. 2008. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 19:414-19
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, pp. 414-419
-
-
Atsumi, S.1
Liao, J.C.2
-
148
-
-
34250835050
-
Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
-
DOI 10.1038/nature05923, PII NATURE05923
-
Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA. 2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982-85 (Pubitemid 46975757)
-
(2007)
Nature
, vol.447
, Issue.7147
, pp. 982-985
-
-
Roman-Leshkov, Y.1
Barrett, C.J.2
Liu, Z.Y.3
Dumesic, J.A.4
-
149
-
-
66149164727
-
Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies
-
Lu YL, Warner R, Sedlak M, Ho N, Mosier NS. 2009. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol. Prog. 25:349-56
-
(2009)
Biotechnol. Prog.
, vol.25
, pp. 349-356
-
-
Lu, Y.L.1
Warner, R.2
Sedlak, M.3
Ho, N.4
Mosier, N.S.5
-
150
-
-
39849101648
-
Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ
-
Zhong L, Matthews JF, Crowley MF, Rignall T, Talon C, et al. 2008. Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ. Cellulose 15:261-73
-
(2008)
Cellulose
, vol.15
, pp. 261-273
-
-
Zhong, L.1
Matthews, J.F.2
Crowley, M.F.3
Rignall, T.4
Talon, C.5
|