메뉴 건너뛰기




Volumn 26, Issue 2, 2011, Pages 199-218

Modelling non-stationary dynamic gene regulatory processes with the BGM model

Author keywords

Changepoint process; Dynamic Bayesian networks; Gene networks; Non stationary gene regulatory processes

Indexed keywords


EID: 79955470162     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-010-0201-9     Document Type: Article
Times cited : (10)

References (15)
  • 1
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal M, Falciani F, Ghahramani Z, Rangel C, Wild D (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3): 349-356.
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.5
  • 2
    • 0028234529 scopus 로고
    • Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins
    • Darnell J, Kerr I, Stark G (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415-1421.
    • (1994) Science , vol.264 , pp. 1415-1421
    • Darnell, J.1    Kerr, I.2    Stark, G.3
  • 3
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • Friedman N, Koller D (2003) Being Bayesian about network structure. Mach Learn 50: 95-126.
    • (2003) Mach Learn , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 5
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7: 457-472.
    • (1992) Stat Sci , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.2
  • 6
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 7
    • 43049097125 scopus 로고    scopus 로고
    • Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
    • Grzegorczyk M, Husmeier D (2008) Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Mach Learn 71: 265-305.
    • (2008) Mach Learn , vol.71 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 8
    • 51749112494 scopus 로고    scopus 로고
    • Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
    • Grzegorczyk M, Husmeier D, Edwards K, Ghazal P, Millar A (2008) Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics 24: 2071-2078.
    • (2008) Bioinformatics , vol.24 , pp. 2071-2078
    • Grzegorczyk, M.1    Husmeier, D.2    Edwards, K.3    Ghazal, P.4    Millar, A.5
  • 9
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • M. I. Jordan (Ed.), Cambridge, Massachusetts: MIT Press
    • Heckerman D (1999) A tutorial on learning with Bayesian networks. In: Jordan MI (eds) Learning in graphical models, adaptive computation and machine learning. MIT Press, Cambridge, Massachusetts, pp 301-354.
    • (1999) Learning in Graphical Models, Adaptive Computation and Machine Learning , pp. 301-354
    • Heckerman, D.1
  • 10
    • 33748475531 scopus 로고    scopus 로고
    • Type I interferon gene induction by the Interferon regulatory factor family of transcription factors
    • Honda K, Takaoka A, Taniguchi T. (2006) Type I interferon gene induction by the Interferon regulatory factor family of transcription factors. Immunity 25: 349-360.
    • (2006) Immunity , vol.25 , pp. 349-360
    • Honda, K.1    Takaoka, A.2    Taniguchi, T.3
  • 11
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19: 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 12
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D, York J (1995) Bayesian graphical models for discrete data. Int Stat Rev 63: 215-232.
    • (1995) Int Stat Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 14
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers S, Girolami M (2005) A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21(14): 3131-3137.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 15
    • 17644427718 scopus 로고    scopus 로고
    • Protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er DA, Lauffenburger DA, Nolan GP (2005) Protein-signaling networks derived from multiparameter single-cell data. Science 308: 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.A.3    Lauffenburger, D.A.4    Nolan, G.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.