-
2
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Bernard, A. and Hartemink, A., " Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data ", PSB, 2006, pp. 459-470.
-
(2006)
PSB
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.2
-
3
-
-
33745622668
-
An effective structure learning method for constructing gene networks
-
Chen, X., Anantha, G., and Wang, X., " An effective structure learning method for constructing gene networks ", Bioinformatics, 22, 2006, pp. 1367-1374.
-
(2006)
Bioinformatics
, vol.22
, pp. 1367-1374
-
-
Chen, X.1
Anantha, G.2
Wang, X.3
-
4
-
-
49049101776
-
Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables
-
Davies, S., Moore, A. , " Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables ", 2000, CMU-CS-00-119.
-
(2000)
CMU-CS-00-119
-
-
Davies, S.1
Moore, A.2
-
5
-
-
14344263350
-
Learning Bayesian network structure from massive datasets: The Sparse Candidate algorithm
-
Friedman, N., Iftach N., and Peer, D., " Learning Bayesian network structure from massive datasets: The Sparse Candidate algorithm ", Uncertainty in Artificial Intelligence (UAI)s, 1999, pp. 206-215.
-
(1999)
Uncertainty in Artificial Intelligence (UAI)s
, pp. 206-215
-
-
Friedman, N.1
Iftach, N.2
Peer, D.3
-
6
-
-
0036366689
-
Combining location and expression data for principled discovery of genetic regulatory networks
-
Hartemink, A. et al., " Combining location and expression data for principled discovery of genetic regulatory networks ", PSB, 2002, pp. 437-449.
-
(2002)
PSB
, pp. 437-449
-
-
Hartemink, A.1
-
7
-
-
0003846041
-
A tutorial n learning Bayesian networks
-
Technical Report MSR-TR-95-06 Microsoft Research
-
Heckerman, D., " A tutorial n learning Bayesian networks ", Technical Report MSR-TR-95-06 Microsoft Research., 1996.
-
(1996)
-
-
Heckerman, D.1
-
8
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier, D., " Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks ", Bioinformatics, 2003, 19, pp. 2271-2282.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
9
-
-
2442703194
-
Finding optimal models for small gene networks
-
Otta, S. et al., " Finding optimal models for small gene networks ", PSB, 2004, pp. 555-567.
-
(2004)
PSB
, pp. 555-567
-
-
Otta, S.1
-
10
-
-
27544503451
-
Growing Bayesian network models of gene networks from seed genes
-
Pena, J. et al., "Growing Bayesian network models of gene networks from seed genes ", Bioinformatics, 2005, 21, pp. i224-i229.
-
(2005)
Bioinformatics
, vol.21
-
-
Pena, J.1
-
11
-
-
4143058645
-
Gene networks inference using dynamic Bayesian networks
-
Perrin, B.E, et al., Gene networks inference using dynamic Bayesian networks ", Bioinformatics, 2003, 19,pp. i138-i148.
-
(2003)
Bioinformatics
, vol.19
-
-
Perrin, B.E.1
-
12
-
-
10244230983
-
Reconstruction of gene networks using Bayesian learning and manipulation experiments
-
Pournara, I. and Wernisch, L., " Reconstruction of gene networks using Bayesian learning and manipulation experiments ", Bioinformatics, 2004, 20,pp. 2934-2942.
-
(2004)
Bioinformatics
, vol.20
, pp. 2934-2942
-
-
Pournara, I.1
Wernisch, L.2
-
13
-
-
0000042837
-
Evaluating functional network inference using simulations of complex biological systems
-
Smith, V.A. et al., " Evaluating functional network inference using simulations of complex biological systems Bioinformatics, 2002, 18, pp, s216-s224.
-
(2002)
Bioinformatics
, vol.18
-
-
Smith, V.A.1
-
14
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
Spellman, P.T, et al., " Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization", Mol. Biol. Cell, 1999, 9, pp. 3273-3297.
-
(1999)
Mol. Biol. Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.T.1
-
15
-
-
0036469527
-
A greedy EM algorithm for Gaussian mixture learning
-
Vlassis, N. and Likas, A., A greedy EM algorithm for Gaussian mixture learning ", Neutral Processing Letters, 2002, pp. 263-267.
-
(2002)
Neutral Processing Letters
, pp. 263-267
-
-
Vlassis, N.1
Likas, A.2
-
16
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
Yu, J. et al., " Advances to Bayesian network inference for generating causal networks from observational biological data ", Bioinformatics, 2004, 20, pp. 3594-3603.
-
(2004)
Bioinformatics
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
-
17
-
-
12744261506
-
A new dynamic Bayesian network(DBN) approach for identifying gene regulatory networks from time course microarray data
-
Zhou, X. et al.., " A new dynamic Bayesian network(DBN) approach for identifying gene regulatory networks from time course microarray data ", Bioinformatics, 2001, 21, pp. 71-79.
-
(2001)
Bioinformatics
, vol.21
, pp. 71-79
-
-
Zhou, X.1
-
18
-
-
49049099508
-
Development and implementation of longitudinal linear and nonlinear models to describe changes in gene expression across ages
-
Sep
-
Rodriguez-Zas SL, Southey BR, Whitfield CW, Robinson GE.," Development and implementation of longitudinal linear and nonlinear models to describe changes in gene expression across ages", BMC Genomics, 2006, Sep, 13, 7:233.
-
(2006)
BMC Genomics
, vol.13
, Issue.7
, pp. 233
-
-
Rodriguez-Zas, S.L.1
Southey, B.R.2
Whitfield, C.W.3
Robinson, G.E.4
-
19
-
-
49049119186
-
-
KEGG Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/.
-
"KEGG Kyoto Encyclopedia of Genes and Genomes", http://www.genome.jp/kegg/.
-
-
-
|