메뉴 건너뛰기




Volumn , Issue , 2007, Pages 362-367

Inference of gene pathways using Gaussian mixture models

Author keywords

Bayesian information criterion; Bayesian networks; Microarray; Mixture model

Indexed keywords

BAYESIAN NETWORKS; BIOACTIVITY; BIOCOMMUNICATIONS; BIOINFORMATICS; COMMUNICATION CHANNELS (INFORMATION THEORY); DISTRIBUTED PARAMETER NETWORKS; ELECTRIC NETWORK TOPOLOGY; ESTIMATION; GENE EXPRESSION; INFERENCE ENGINES; INFORMATION SCIENCE; INTELLIGENT NETWORKS; MIXTURES; OBJECT RECOGNITION; PARAMETER ESTIMATION; SPEECH ANALYSIS; TOPOLOGY; TRELLIS CODES;

EID: 39449124154     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2007.59     Document Type: Conference Paper
Times cited : (20)

References (19)
  • 2
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Bernard, A. and Hartemink, A., " Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data ", PSB, 2006, pp. 459-470.
    • (2006) PSB , pp. 459-470
    • Bernard, A.1    Hartemink, A.2
  • 3
    • 33745622668 scopus 로고    scopus 로고
    • An effective structure learning method for constructing gene networks
    • Chen, X., Anantha, G., and Wang, X., " An effective structure learning method for constructing gene networks ", Bioinformatics, 22, 2006, pp. 1367-1374.
    • (2006) Bioinformatics , vol.22 , pp. 1367-1374
    • Chen, X.1    Anantha, G.2    Wang, X.3
  • 4
    • 49049101776 scopus 로고    scopus 로고
    • Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables
    • Davies, S., Moore, A. , " Mix-nets: Factored mixtures of Gaussians in Bayesian networks with mixed continuous and discrete variables ", 2000, CMU-CS-00-119.
    • (2000) CMU-CS-00-119
    • Davies, S.1    Moore, A.2
  • 5
    • 14344263350 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The Sparse Candidate algorithm
    • Friedman, N., Iftach N., and Peer, D., " Learning Bayesian network structure from massive datasets: The Sparse Candidate algorithm ", Uncertainty in Artificial Intelligence (UAI)s, 1999, pp. 206-215.
    • (1999) Uncertainty in Artificial Intelligence (UAI)s , pp. 206-215
    • Friedman, N.1    Iftach, N.2    Peer, D.3
  • 6
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory networks
    • Hartemink, A. et al., " Combining location and expression data for principled discovery of genetic regulatory networks ", PSB, 2002, pp. 437-449.
    • (2002) PSB , pp. 437-449
    • Hartemink, A.1
  • 7
    • 0003846041 scopus 로고    scopus 로고
    • A tutorial n learning Bayesian networks
    • Technical Report MSR-TR-95-06 Microsoft Research
    • Heckerman, D., " A tutorial n learning Bayesian networks ", Technical Report MSR-TR-95-06 Microsoft Research., 1996.
    • (1996)
    • Heckerman, D.1
  • 8
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D., " Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks ", Bioinformatics, 2003, 19, pp. 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 9
    • 2442703194 scopus 로고    scopus 로고
    • Finding optimal models for small gene networks
    • Otta, S. et al., " Finding optimal models for small gene networks ", PSB, 2004, pp. 555-567.
    • (2004) PSB , pp. 555-567
    • Otta, S.1
  • 10
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • Pena, J. et al., "Growing Bayesian network models of gene networks from seed genes ", Bioinformatics, 2005, 21, pp. i224-i229.
    • (2005) Bioinformatics , vol.21
    • Pena, J.1
  • 11
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • Perrin, B.E, et al., Gene networks inference using dynamic Bayesian networks ", Bioinformatics, 2003, 19,pp. i138-i148.
    • (2003) Bioinformatics , vol.19
    • Perrin, B.E.1
  • 12
    • 10244230983 scopus 로고    scopus 로고
    • Reconstruction of gene networks using Bayesian learning and manipulation experiments
    • Pournara, I. and Wernisch, L., " Reconstruction of gene networks using Bayesian learning and manipulation experiments ", Bioinformatics, 2004, 20,pp. 2934-2942.
    • (2004) Bioinformatics , vol.20 , pp. 2934-2942
    • Pournara, I.1    Wernisch, L.2
  • 13
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • Smith, V.A. et al., " Evaluating functional network inference using simulations of complex biological systems Bioinformatics, 2002, 18, pp, s216-s224.
    • (2002) Bioinformatics , vol.18
    • Smith, V.A.1
  • 14
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P.T, et al., " Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization", Mol. Biol. Cell, 1999, 9, pp. 3273-3297.
    • (1999) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 15
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for Gaussian mixture learning
    • Vlassis, N. and Likas, A., A greedy EM algorithm for Gaussian mixture learning ", Neutral Processing Letters, 2002, pp. 263-267.
    • (2002) Neutral Processing Letters , pp. 263-267
    • Vlassis, N.1    Likas, A.2
  • 16
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu, J. et al., " Advances to Bayesian network inference for generating causal networks from observational biological data ", Bioinformatics, 2004, 20, pp. 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1
  • 17
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network(DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zhou, X. et al.., " A new dynamic Bayesian network(DBN) approach for identifying gene regulatory networks from time course microarray data ", Bioinformatics, 2001, 21, pp. 71-79.
    • (2001) Bioinformatics , vol.21 , pp. 71-79
    • Zhou, X.1
  • 18
    • 49049099508 scopus 로고    scopus 로고
    • Development and implementation of longitudinal linear and nonlinear models to describe changes in gene expression across ages
    • Sep
    • Rodriguez-Zas SL, Southey BR, Whitfield CW, Robinson GE.," Development and implementation of longitudinal linear and nonlinear models to describe changes in gene expression across ages", BMC Genomics, 2006, Sep, 13, 7:233.
    • (2006) BMC Genomics , vol.13 , Issue.7 , pp. 233
    • Rodriguez-Zas, S.L.1    Southey, B.R.2    Whitfield, C.W.3    Robinson, G.E.4
  • 19
    • 49049119186 scopus 로고    scopus 로고
    • KEGG Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/.
    • "KEGG Kyoto Encyclopedia of Genes and Genomes", http://www.genome.jp/kegg/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.