-
1
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman N, Linial M, Nachman I, Pe'er D, Using Bayesian networks to analyze expression data, J Comput Biol 7:601-620, 2000.
-
(2000)
J Comput Biol
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
2
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
-
Hartemink AJ, Gifford DK, Jaakkola TS, Young RA, Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks, Pac Symp Biocomput 6:422-433, 2001.
-
(2001)
Pac Symp Biocomput
, vol.6
, pp. 422-433
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
3
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
Jordan MI ed, MIT Press, Cambridge, MA, pp
-
Heckerman D, A tutorial on learning with Bayesian networks, in Jordan MI (ed.), Learning in Graphical Models, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, pp. 301-354, 1999.
-
(1999)
Learning in Graphical Models, Adaptive Computation and Machine Learning
, pp. 301-354
-
-
Heckerman, D.1
-
4
-
-
30544451226
-
-
Springer, New York
-
Husmeier D, Dybowski R, Roberts S, Probabilistic Modeling in Bioinformatics and Medical Informatics, Advanced Information and Knowledge Processing, Springer, New York, 2005.
-
(2005)
Probabilistic Modeling in Bioinformatics and Medical Informatics, Advanced Information and Knowledge Processing
-
-
Husmeier, D.1
Dybowski, R.2
Roberts, S.3
-
5
-
-
0032273105
-
Learning probabilistic networks
-
Krause PJ, Learning probabilistic networks, Knowledge Eng Rev 13:321-351, 1998.
-
(1998)
Knowledge Eng Rev
, vol.13
, pp. 321-351
-
-
Krause, P.J.1
-
6
-
-
0000034390
-
Learning Gaussian networks
-
Morgan Kaufmann, San Francisco, CA, pp
-
Geiger D, Heckerman D, Learning Gaussian networks, in Proc 10th Conf on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, pp. 235-243, 1994.
-
(1994)
Proc 10th Conf on Uncertainty in Artificial Intelligence
, pp. 235-243
-
-
Geiger, D.1
Heckerman, D.2
-
7
-
-
10244230983
-
Reconstruction of gene networks using Bayesian learning and manipulation experiments
-
Pournara I, Wernisch L, Reconstruction of gene networks using Bayesian learning and manipulation experiments, Bioinformatics 20 2934-2942, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2934-2942
-
-
Pournara, I.1
Wernisch, L.2
-
8
-
-
33749825955
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
-
Werhli AV, Grzegorezyk M, Husmeier D, Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks, Bioinformatics, 22 2523-2531, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 2523-2531
-
-
Werhli, A.V.1
Grzegorezyk, M.2
Husmeier, D.3
-
9
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan D, York J, Bayesian graphical models for discrete data, Int Stat Rev 63:215-232, 1995.
-
(1995)
Int Stat Rev
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
-
10
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings WK, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57:97-109, 1970.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
11
-
-
84960432692
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
Imoto S, Higuchi T, Goto T, Kuhara S, Miyano S, Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks, in Proc IEEE Computer Society Bioinformatics Conference (CSB'03), pp. 104-113, 2003.
-
(2003)
Proc IEEE Computer Society Bioinformatics Conference (CSB'03)
, pp. 104-113
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Kuhara, S.4
Miyano, S.5
-
12
-
-
33644783926
-
Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks
-
Imoto S, Higuchi T, Goto T, Miyano S, Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks, Stat Method 3(1):1-16, 2006.
-
(2006)
Stat Method
, vol.3
, Issue.1
, pp. 1-16
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Miyano, S.4
-
13
-
-
2442718023
-
Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
-
Nariai N, Kim S, Imoto S, Miyano S, Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks, Pac Symp Biocomput 9:336-347, 2004.
-
(2004)
Pac Symp Biocomput
, vol.9
, pp. 336-347
-
-
Nariai, N.1
Kim, S.2
Imoto, S.3
Miyano, S.4
-
14
-
-
31044450846
-
Utilizing evolutionary information and gene expression data for estimating gene networks with Bayesian network models
-
Tamada Y, Bannai H, Imoto S, Katayama T, Kanehisa M, Miyano S, Utilizing evolutionary information and gene expression data for estimating gene networks with Bayesian network models, J Bioinform Comput Biol 3(6):1295-1313, 2005.
-
(2005)
J Bioinform Comput Biol
, vol.3
, Issue.6
, pp. 1295-1313
-
-
Tamada, Y.1
Bannai, H.2
Imoto, S.3
Katayama, T.4
Kanehisa, M.5
Miyano, S.6
-
15
-
-
85142183680
-
-
Tamada Y, Kim S, Bannal H, Imoto S, Tashiro K, Kuhara S, Miyano S, Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection, Bioinformatics 19:iI227-ii236, 2003.
-
Tamada Y, Kim S, Bannal H, Imoto S, Tashiro K, Kuhara S, Miyano S, Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection, Bioinformatics 19:iI227-ii236, 2003.
-
-
-
-
17
-
-
0037262841
-
Being Bayesian about network structure
-
Priedman N, Koller D, Being Bayesian about network structure, Mach Learn 50:95-126, 2003.
-
(2003)
Mach Learn
, vol.50
, pp. 95-126
-
-
Priedman, N.1
Koller, D.2
-
18
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier D, Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks, Bioinformatics 19:2271-2282, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
19
-
-
34249774309
-
Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
-
aRticle 15
-
Werhli A, Husmeier D, Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge, Stat Appl Genet Mol Biol 6(1):aRticle 15, 2007.
-
(2007)
Stat Appl Genet Mol Biol
, vol.6
, Issue.1
-
-
Werhli, A.1
Husmeier, D.2
-
20
-
-
0030539336
-
Markov chain Monte Carlo convergence diagnostics: A comparative review
-
Cowles MK, Carlin BP, Markov chain Monte Carlo convergence diagnostics: A comparative review, J Am Stat Assoc 91:883-904, 1996.
-
(1996)
J Am Stat Assoc
, vol.91
, pp. 883-904
-
-
Cowles, M.K.1
Carlin, B.P.2
-
22
-
-
17644427718
-
Protein-signaling networks derived from multiparameter single-cell data
-
Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP, Protein-signaling networks derived from multiparameter single-cell data, Science 308:523-529, 2005.
-
(2005)
Science
, vol.308
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
23
-
-
19944430124
-
Regulation of Raf-1 by direct feedback phosphorylation
-
Dougherty MK, Müller, J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK, Regulation of Raf-1 by direct feedback phosphorylation, Mol Cell 17:215-224, 2005.
-
(2005)
Mol Cell
, vol.17
, pp. 215-224
-
-
Dougherty, M.K.1
Müller, J.2
Ritt, D.A.3
Zhou, M.4
Zhou, X.Z.5
Copeland, T.D.6
Conrads, T.P.7
Veenstra, T.D.8
Lu, K.P.9
Morrison, D.K.10
-
24
-
-
0003516749
-
-
3rd edn Oxford University Press, Oxford
-
Atkins PW, Physical Chemistry, 3rd edn Oxford University Press, Oxford, 1986.
-
(1986)
Physical Chemistry
-
-
Atkins, P.W.1
-
25
-
-
15944372607
-
An enzyme mechanism language for the mathematical modeling of metabolic pathways
-
Yang C-R, Shapiro BE, Mjolsness ED, Hatfield GW, An enzyme mechanism language for the mathematical modeling of metabolic pathways, Bioinformatics 21(6):774-780, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.6
, pp. 774-780
-
-
Yang, C.-R.1
Shapiro, B.E.2
Mjolsness, E.D.3
Hatfield, G.W.4
-
26
-
-
0032549745
-
Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene
-
Yuh CH, Bolouri H, Davidson EH, Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene, Science 279:1896-1902, 1998.
-
(1998)
Science
, vol.279
, pp. 1896-1902
-
-
Yuh, C.H.1
Bolouri, H.2
Davidson, E.H.3
-
27
-
-
0035094449
-
cis-regulatory logic in the endo16 gene: Switching from a specification to a differentiation mode of control
-
Yuh CH, Bolouri H, Davidson EH, cis-regulatory logic in the endo16 gene: Switching from a specification to a differentiation mode of control, Development 128:617-629, 2001.
-
(2001)
Development
, vol.128
, pp. 617-629
-
-
Yuh, C.H.1
Bolouri, H.2
Davidson, E.H.3
-
28
-
-
0030921594
-
A database for post-genome analysis
-
Kanehisa M, A database for post-genome analysis, Trends Genet 13:375-376, 1997.
-
(1997)
Trends Genet
, vol.13
, pp. 375-376
-
-
Kanehisa, M.1
-
29
-
-
0033982936
-
Kyoto Encyclopedia of Genes and Genomes
-
KEGG
-
Kanehisa M, Coto S, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res 28:27-30, 2000.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 27-30
-
-
Kanehisa, M.1
Coto, S.2
-
30
-
-
33644874819
-
From genomics to chemical genomics: New developments in KEGG
-
Kanehisa M, Coto S, Hattori M, Aoki-Kinoshita K, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M, From genomics to chemical genomics: New developments in KEGG, Nucleic Acids Res 34:D354-357, 2006.
-
(2006)
Nucleic Acids Res
, vol.34
-
-
Kanehisa, M.1
Coto, S.2
Hattori, M.3
Aoki-Kinoshita, K.4
Itoh, M.5
Kawashima, S.6
Katayama, T.7
Araki, M.8
Hirakawa, M.9
-
31
-
-
15944364151
-
An empirical Bayes approach to inferring large-scale gene association networks
-
Schäfer J, Strimmer K, An empirical Bayes approach to inferring large-scale gene association networks, Bioinformatics 21 6):754-764, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.6
, pp. 754-764
-
-
Schäfer, J.1
Strimmer, K.2
-
32
-
-
27844521293
-
A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
-
aRticle 32
-
Schäfer J, Strimmer K, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Stat Appl Genet Mol Biol 4(1):aRticle 32, 2005.
-
(2005)
Stat Appl Genet Mol Biol
, vol.4
, Issue.1
-
-
Schäfer, J.1
Strimmer, K.2
-
33
-
-
0002795650
-
Markov chain Monte Carlo maximum likelihood
-
Keramidas EM ed, VA, pp
-
Geyer CJ, Markov chain Monte Carlo maximum likelihood, in Keramidas EM (ed.), Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, Interface Foundation, Fairfax Station, VA, pp. 156-163, 1991.
-
(1991)
Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, Interface Foundation, Fairfax Station
, pp. 156-163
-
-
Geyer, C.J.1
-
34
-
-
0002388372
-
Strategies for improving MCMC
-
Gilks WR, Roberts GO eds, Chapman & Hall, Suffolk, UK, pp
-
Gilks WR, Richardson S, Spiegelhalter DJ, Strategies for improving MCMC, in Gilks WR, Roberts GO (eds.), Markov Chain Monte Carlo in Practice Chapman & Hall, Suffolk, UK, pp. 89-114, 1996.
-
(1996)
Markov Chain Monte Carlo in Practice
, pp. 89-114
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
-
35
-
-
0034849408
-
Mr Bayes: Bayesian inference of phylogenetic trees
-
Huelsenbeck JP, Ronquist F, Mr Bayes: Bayesian inference of phylogenetic trees, Bioinformatics 17:754-755, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 754-755
-
-
Huelsenbeck, J.P.1
Ronquist, F.2
-
36
-
-
0037266164
-
Population Markov chain Monte Carlo
-
Laskey KB, Myers JW, Population Markov chain Monte Carlo, Mach Learn 50(1-2):175-196, 2003.
-
(2003)
Mach Learn
, vol.50
, Issue.1-2
, pp. 175-196
-
-
Laskey, K.B.1
Myers, J.W.2
|