메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1369-1376

Non-stationary dynamic Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; BIOINFORMATICS; LEARNING ALGORITHMS;

EID: 77956500503     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (91)

References (14)
  • 1
    • 0033691754 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • ACM Press
    • Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe'er. Using Bayesian networks to analyze expression data. In RECOMB 4, pages 127-135. ACM Press, 2000.
    • (2000) RECOMB , vol.4 , pp. 127-135
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 2
    • 33751407959 scopus 로고    scopus 로고
    • Computational inference of neural information flow networks
    • DOI 10.1371/journal.pcbi.0020161
    • V. Anne Smith, Jing Yu, Tom V. Smulders, Alexander J. Hartemink, and Erich D. Jarvis. Computational inference of neural information flow networks. PLoS Computational Biology, 2(11):1436-1449, 2006. (Pubitemid 44819929)
    • (2006) PLoS Computational Biology , vol.2 , Issue.11 , pp. 1436-1449
    • Smith, V.A.1    Yu, J.2    Smulders, T.V.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 4
    • 84858782531 scopus 로고    scopus 로고
    • Recovering temporally rewiring networks: A model-based approach
    • Fan Guo, Steve Hanneke, Wenjie Fu, and Eric P. Xing. Recovering temporally rewiring networks: A model-based approach. In ICML 24, 2007.
    • (2007) ICML , vol.24
    • Guo, F.1    Hanneke, S.2    Fu, W.3    Xing, E.P.4
  • 5
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: Tracking the cross-section of financial time series
    • DOI 10.1111/j.1467-9868.2005.00504.x
    • Makram Talih and Nicolas Hengartner. Structural learning with time-varying components: Tracking the cross-section of financial time series. Journal of the Royal Statistical Society B, 67(3):321-341, 2005. (Pubitemid 40855287)
    • (2005) Journal of the Royal Statistical Society. Series B: Statistical Methodology , vol.67 , Issue.3 , pp. 321-341
    • Talih, M.1    Hengartner, N.2
  • 6
    • 77956512686 scopus 로고    scopus 로고
    • Modeling changing dependency structure in multivariate time series
    • Xiang Xuan and Kevin Murphy. Modeling changing dependency structure in multivariate time series. In ICML 24, 2007.
    • (2007) ICML , vol.24
    • Xuan, X.1    Murphy, K.2
  • 7
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 8
    • 84993704988 scopus 로고    scopus 로고
    • MCMC model determination for discrete graphical models
    • Claudia Tarantola. MCMC model determination for discrete graphical models. Statistical Modelling, 4(1):39-61, 2004.
    • (2004) Statistical Modelling , vol.4 , Issue.1 , pp. 39-61
    • Tarantola, C.1
  • 9
    • 0032273105 scopus 로고    scopus 로고
    • Learning probabilistic networks
    • P Krause. Learning probabilistic networks. The Knowledge Engineering Review, 13(4):321-351, 1998. (Pubitemid 128659264)
    • (1998) Knowledge Engineering Review , vol.13 , Issue.4 , pp. 321-351
    • Krause, P.J.1
  • 10
  • 11
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711-732, 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 13
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • DOI 10.1093/bioinformatics/btl364
    • Wentao Zhao, Erchin Serpedin, and Edward R. Dougherty. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 22(17):2129-2135, 2006. (Pubitemid 44390904)
    • (2006) Bioinformatics , vol.22 , Issue.17 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3
  • 14
    • 33646858607 scopus 로고    scopus 로고
    • A temporal map of transcription factor activity: Mef2 directly regulates target genes at all stages of muscle development
    • DOI 10.1016/j.devcel.2006.04.009, PII S1534580706001705
    • T Sandmann, L Jensen, J Jakobsen, MKarzynski, MEichenlaub, P Bork, and E Furlong. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Developmental Cell, 10(6):797-807, 2006. (Pubitemid 43779116)
    • (2006) Developmental Cell , vol.10 , Issue.6 , pp. 797-807
    • Sandmann, T.1    Jensen, L.J.2    Jakobsen, J.S.3    Karzynski, M.M.4    Eichenlaub, M.P.5    Bork, P.6    Furlong, E.E.M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.