메뉴 건너뛰기




Volumn 24, Issue 18, 2008, Pages 2071-2078

Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler

Author keywords

[No Author keywords available]

Indexed keywords

GAMMA INTERFERON;

EID: 51749112494     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn367     Document Type: Article
Times cited : (61)

References (26)
  • 1
    • 0034749494 scopus 로고    scopus 로고
    • Lymphotoxins and cytomegalovirus cooperatively induce interferon-b establishing host-virus détente
    • Benedict,C.A. et al. (2001) Lymphotoxins and cytomegalovirus cooperatively induce interferon-b establishing host-virus détente. Immunity, 15, 617-626.
    • (2001) Immunity , vol.15 , pp. 617-626
    • Benedict, C.A.1
  • 2
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper,G.F and Herskovits,E. (1992) A Bayesian method for the induction of probabilistic networks from data. Mach. Learn., 9, 309-347.
    • (1992) Mach. Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 3
    • 0028234529 scopus 로고
    • Jak-STAT pathways and transcriptional activation in response to IFNs and other exhacellular signaling proteins
    • Darnell,J. et al. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other exhacellular signaling proteins. Science, 264, 1415-1421.
    • (1994) Science , vol.264 , pp. 1415-1421
    • Darnell, J.1
  • 4
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian netwotks to analyze expression data
    • Friedman,N. et al. (2000) Using Bayesian netwotks to analyze expression data. J. Comput. Biol., 7, 601-620.
    • (2000) J. Comput. Biol , vol.7 , pp. 601-620
    • Friedman, N.1
  • 5
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic Bayesian probabilistic networks
    • Cooper,G.F. and Moral,S, eds, Morgan Kaufmann Publishers, San Francisco, CA. pp
    • Friedmann,N. et al. (1998) Learning the structure of dynamic Bayesian probabilistic networks. In Cooper,G.F. and Moral,S. (eds) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI). Morgan Kaufmann Publishers, San Francisco, CA. pp. 139-147.
    • (1998) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI) , pp. 139-147
    • Friedmann, N.1
  • 7
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green,P. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 8
    • 43049097125 scopus 로고    scopus 로고
    • Improving the structure MCMC sampler for Bayestan networks by introducing a new edge reversal move
    • Grzegorczyk,M. and Husmeier,D. (2008) Improving the structure MCMC sampler for Bayestan networks by introducing a new edge reversal move. Mach. Learn., 71, 265-305.
    • (2008) Mach. Learn , vol.71 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 9
    • 33748475531 scopus 로고    scopus 로고
    • Type I Inteferon gem induction by the Interferon regulatory factor family of transcription factors
    • Honda,K. et al. (2006) Type I Inteferon gem induction by the Interferon regulatory factor family of transcription factors. Immunity, 25, 349-360.
    • (2006) Immunity , vol.25 , pp. 349-360
    • Honda, K.1
  • 10
    • 2442671519 scopus 로고    scopus 로고
    • Bayesian phylogenetic model selection using reversible jump Marov chain monte carlo
    • Huelsenbeck,J. et al. (2004) Bayesian phylogenetic model selection using reversible jump Marov chain monte carlo. Mol. Biol. Evol., 21, 1123-1133.
    • (2004) Mol. Biol. Evol , vol.21 , pp. 1123-1133
    • Huelsenbeck, J.1
  • 11
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 12
    • 3042698613 scopus 로고    scopus 로고
    • Bayesian network and nonparametric heterosocedastic regression for nonlinear modeling of genetic network
    • Imoto,S. et al. (2003) Bayesian network and nonparametric heterosocedastic regression for nonlinear modeling of genetic network. J. Bioinform. Computat Biol., 1, 231-252.
    • (2003) J. Bioinform. Computat Biol , vol.1 , pp. 231-252
    • Imoto, S.1
  • 13
    • 0141731246 scopus 로고    scopus 로고
    • Entrainment of circadian programs
    • Johnson,C. et al. (2003) Entrainment of circadian programs. Chronobiol. Int., 20, 741-774.
    • (2003) Chronobiol. Int , vol.20 , pp. 741-774
    • Johnson, C.1
  • 16
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan,D. and York,J. (1995) Bayesian graphical models for discrete data. Int. Stat. Rev., 63, 215-232.
    • (1995) Int. Stat. Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 17
    • 44649104433 scopus 로고    scopus 로고
    • Circadian clock function in Arabidopsis thaliana: Time beyond transcription
    • Mas,P. (2008) Circadian clock function in Arabidopsis thaliana: Time beyond transcription. Trends Cell Biol., 18, 273-281.
    • (2008) Trends Cell Biol , vol.18 , pp. 273-281
    • Mas, P.1
  • 18
    • 34249663093 scopus 로고    scopus 로고
    • Bayesian finite mixtures: A note on prior specification and posterior computation
    • Technical report. Department of Statistics, University of Glasgow, UK
    • Nobile,A. (2005) Bayesian finite mixtures: A note on prior specification and posterior computation. Technical report. Department of Statistics, University of Glasgow, UK.
    • (2005)
    • Nobile, A.1
  • 19
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components: The allocation sampler
    • Nobile,A. and Fearnside,A. (2007) Bayesian finite mixtures with an unknown number of components: The allocation sampler. Stat. Comput. 17, 147-162.
    • (2007) Stat. Comput , vol.17 , pp. 147-162
    • Nobile, A.1    Fearnside, A.2
  • 20
    • 44049087861 scopus 로고    scopus 로고
    • A logic based diagram of signalling pathways central to macrophage activation, 2. Article 36
    • Raza,S. et al. (2008) A logic based diagram of signalling pathways central to macrophage activation. BMC Syst. Biol., 2. Article 36.
    • (2008) BMC Syst. Biol
    • Raza, S.1
  • 21
    • 17644427718 scopus 로고    scopus 로고
    • Protein-signaling networks derived from multipariameter single-cell data
    • Sachs,K. et al. (2005) Protein-signaling networks derived from multipariameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 22
    • 4544282973 scopus 로고    scopus 로고
    • The Aribidopsis thaliana clock
    • Salome,P. and McClung,C. (2004) The Aribidopsis thaliana clock. J. Biol. Rhythms, 19, 425-435.
    • (2004) J. Biol. Rhythms , vol.19 , pp. 425-435
    • Salome, P.1    McClung, C.2
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz,G. (1978) Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 0036781790 scopus 로고    scopus 로고
    • Bayesian model assessment and comparison using cross-validation predictive densities
    • Vehtari,A. and Lampinen,J. (2002) Bayesian model assessment and comparison using cross-validation predictive densities. Neural Comput., 14, 2439-2468.
    • (2002) Neural Comput , vol.14 , pp. 2439-2468
    • Vehtari, A.1    Lampinen, J.2
  • 25
    • 21844487977 scopus 로고
    • Computing Bayes factors using a generalization of the Savage-Dickey density ratio
    • Verdinelli,I. and Wasserman,L. (1995) Computing Bayes factors using a generalization of the Savage-Dickey density ratio. J. Am. Stat. Assoc., 90, 614-618.
    • (1995) J. Am. Stat. Assoc , vol.90 , pp. 614-618
    • Verdinelli, I.1    Wasserman, L.2
  • 26
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • Werhli,A.V. et al. (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics, 22, 2523-2531.
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.