메뉴 건너뛰기




Volumn 8, Issue 2, 2011, Pages 107-111

Evaluation of mutual information, genetic algorithm and SVR for feature selection in QSAR regression

Author keywords

Feature selection; Quantitative structure activity relationship; Regression; Support vector machine

Indexed keywords

ALGORITHM; ARTICLE; EVALUATION; GENETIC ALGORITHM; INTERMETHOD COMPARISON; MUTUAL INFORMATION; PARAMETER; PERFORMANCE; PRIORITY JOURNAL; QUANTITATIVE STRUCTURE ACTIVITY RELATION; SUPPORT VECTOR MACHINE; SUPPORT VECTOR MACHINE REGRESSION BASED RECURSIVE FEATURE ELIMINATION;

EID: 79956086847     PISSN: 15701638     EISSN: 18756220     Source Type: Journal    
DOI: 10.2174/157016311795563839     Document Type: Article
Times cited : (6)

References (28)
  • 1
    • 0005910987 scopus 로고
    • Correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients
    • Hansch C, Streich M, Geiger F, Muir RM, Maloney PP, Fujita T. Correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients. J Am Chem Soc 1963; 85(18): 2817-24.
    • (1963) J Am Chem Soc , vol.85 , Issue.18 , pp. 2817-2824
    • Hansch, C.1    Streich, M.2    Geiger, F.3    Muir, R.M.4    Maloney, P.P.5    Fujita, T.6
  • 2
    • 0033779243 scopus 로고    scopus 로고
    • Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening
    • Xue L, Bajorath J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen 2000; 3(5): 363-72.
    • (2000) Comb Chem High Throughput Screen , vol.3 , Issue.5 , pp. 363-372
    • Xue, L.1    Bajorath, J.2
  • 3
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997; 97(1-2): 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 4
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and Feature selection
    • Guyon I, Elisseeff A. An introduction to variable and Feature selection. J machine learning res 2003; 3: 1157-82.
    • (2003) J Machine Learning Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 5
    • 0034597582 scopus 로고    scopus 로고
    • 2D QSAR modeling and preliminary database searching for dopamine transporter inhibitors using genetic algorithm variable selection of Molconn Z descriptors
    • Hoffman BT, Kopajtic T, Katz JL, Newman AH. 2D QSAR modeling and preliminary database searching for dopamine transporter inhibitors using genetic algorithm variable selection of Molconn Z descriptors. J Med Chem 2000; 43 (22): 4151-9.
    • (2000) J Med Chem , vol.43 , Issue.22 , pp. 4151-4159
    • Hoffman, B.T.1    Kopajtic, T.2    Katz, J.L.3    Newman, A.H.4
  • 6
    • 0037498037 scopus 로고    scopus 로고
    • Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method
    • Wegner JK, Zell A. Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method. J Chem Inf Comp Sci 2003; 43(3): 1077-1084.
    • (2003) J Chem Inf Comp Sci , vol.43 , Issue.3 , pp. 1077-1084
    • Wegner, J.K.1    Zell, A.2
  • 7
    • 0035438386 scopus 로고    scopus 로고
    • Toward an optimal procedure for variable selection and QSAR model building
    • Yasri A, Hartsough D. Toward an optimal procedure for variable selection and QSAR model building. J Chem Inf Comp Sci 2001; 41(5): 1218-27.
    • (2001) J Chem Inf Comp Sci , vol.41 , Issue.5 , pp. 1218-1227
    • Yasri, A.1    Hartsough, D.2
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46 (1-3): 389-422. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • Rakotomamonjy A. Variable selection using SVM-based criteria. J Machine Learning Res 2003; 3: 1357-70.
    • (2003) J Machine Learning Res , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 13
    • 0037208311 scopus 로고    scopus 로고
    • Recursive median partitioning for virtual screening of large databases
    • Godden JW, Furr JR, Bajorath J. Recursive median partitioning for virtual screening of large databases. J Chem Inf Comp Sci 2003; 43(1): 182-8.
    • (2003) J Chem Inf Comp Sci , vol.43 , Issue.1 , pp. 182-188
    • Godden, J.W.1    Furr, J.R.2    Bajorath, J.3
  • 14
    • 0346825283 scopus 로고    scopus 로고
    • MLPs (Monolayer Polynomials and Multi- Layer Perceptrons) for nonlinear modeling
    • Rivals I, Personnaz L. MLPs (Monolayer Polynomials and Multi- Layer Perceptrons) for Nonlinear Modeling. J Machine Learning Res 2003; 3: 1383-98.
    • (2003) J Machine Learning Res , vol.3 , pp. 1383-1398
    • Rivals, I.1    Personnaz, L.2
  • 17
    • 44849090379 scopus 로고    scopus 로고
    • A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model
    • Judson R, Elloumi F, Setzer RW, Li Z, Shah I. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. BMC Bioinformatics 2008; 9: 241.
    • (2008) BMC Bioinformatics , vol.9 , pp. 241
    • Judson, R.1    Elloumi, F.2    Setzer, R.W.3    Li, Z.4    Shah, I.5
  • 18
    • 0028046665 scopus 로고
    • Variable selection in QSAR studies. I. An evolutionary lgorithm
    • Kubiny H. Variable selection in QSAR studies. I. an evolutionary lgorithm. QSAR & Combinatorial Science 1994; 13(3): 285-94;
    • (1994) QSAR & Combinatorial Science , vol.13 , Issue.3 , pp. 285-294
    • Kubiny, H.1
  • 19
    • 41949116226 scopus 로고    scopus 로고
    • On some aspects of variable selection for partial least squares regression models
    • 19] Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR & Combinatorial Science 2008; 27 (3): 302-13.
    • (2008) QSAR & Combinatorial Science , vol.27 , Issue.3 , pp. 302-313
    • Roy, P.P.1    Roy, K.2
  • 20
    • 77954348985 scopus 로고    scopus 로고
    • QSAR analysis of diaryl COX-2 inhibitors: Comparison of feature selection and traintest data selection methods
    • Soltani S, Abolhasani H, Zarghi A, Jouyban A. QSAR analysis of diaryl COX-2 inhibitors: Comparison of feature selection and traintest data selection methods. Eur J Med Chem 2010; 45(7): 2753-60.
    • (2010) Eur J Med Chem , vol.45 , Issue.7 , pp. 2753-2760
    • Soltani, S.1    Abolhasani, H.2    Zarghi, A.3    Jouyban, A.4
  • 21
    • 0037920567 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa
    • DOI 10.1021/jm981062r
    • Bohm M, Sturzebecher J, Klebe G. Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem 1999; 42(3): 458-77. (Pubitemid 29085107)
    • (1999) Journal of Medicinal Chemistry , vol.42 , Issue.3 , pp. 458-477
    • Bohm, M.1    Sturzebecher, J.2    Klebe, G.3
  • 22
    • 0028933176 scopus 로고
    • Structureactivity- relationships of inhibitors derived from 3-amidinophenylalanine
    • Sturzebecher J, Prasa D, Wikstrom P, Vieweg H. Structureactivity- relationships of inhibitors derived from 3-amidinophenylalanine. J Enzym Inhib 1995; 9(1): 87-99.
    • (1995) J Enzym Inhib , vol.9 , Issue.1 , pp. 87-99
    • Sturzebecher, J.1    Prasa, D.2    Wikstrom, P.3    Vieweg, H.4
  • 23
    • 79956155798 scopus 로고    scopus 로고
    • http://www.kyb.mpg.de/bs/people/spider/.
  • 24
    • 5444266247 scopus 로고    scopus 로고
    • Evaluation of mutual information and genetic programming for feature selection in QSAR
    • Venkatraman V, Dalby AR, Yang ZR. Evaluation of mutual information and genetic programming for feature selection in QSAR. J Chem Inf Comp Sci 2004; 44(5): 1686-92.
    • (2004) J Chem Inf Comp Sci , vol.44 , Issue.5 , pp. 1686-1692
    • Venkatraman, V.1    Dalby, A.R.2    Yang, Z.R.3
  • 25
    • 0002472452 scopus 로고
    • Genetic algorithms and the optimal allocation of trials
    • SIAM
    • Holland JH. Genetic algorithms and the optimal allocation of trials. SIAM J Comput 1973; 2(2): 88-105.
    • (1973) J Comput , vol.2 , Issue.2 , pp. 88-105
    • Holland, J.H.1
  • 26
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik VN. An overview of statistical learning theory. IEEE Trans. Neural Networks 1999; 10 (5): 988-99.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 27
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • Smola AJ, Schölkopf B. A tutorial on support vector regression. Statistics and Computing 2004; 14 (3): 199-222. (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 28
    • 0002532939 scopus 로고
    • Probable Error of a coefficient of correlation deduced from a small sample
    • Fisher RA. On the "Probable Error" of a coefficient of correlation deduced from a small sample. Metron 1921; 1: 3-32.
    • (1921) Metron , vol.1 , pp. 3-32
    • Fisher, R.A.1    The, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.