메뉴 건너뛰기




Volumn 3, Issue , 2003, Pages 1399-1414

Ranking a random feature for variable and feature selection

Author keywords

Classification; Feature selection; Gram Schmidt orthogonalization; Information filtering; Kernel; Leave one out; Model selection; Neural networks; Statistical tests; Variable selection

Indexed keywords

GRAM-SCHMIDT ORTHOGONALIZATIONS; KERNEL; LEAVE-ONE-OUT; MODEL SELECTION; VARIABLE SELECTION;

EID: 2942701493     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (249)

References (29)
  • 1
    • 0002168778 scopus 로고
    • Solving linear least squares problems by gram-schmidt orthogonalization
    • A. Bjoerck. Solving linear least squares problems by gram-schmidt orthogonalization. Nordisk Tidshrift for Informationsbehadlung, 7:1-21, 1967.
    • (1967) Nordisk Tidshrift for Informationsbehadlung , vol.7 , pp. 1-21
    • Bjoerck, A.1
  • 2
    • 43949151280 scopus 로고
    • Neural network studies. 3 prediction of partition coefficients
    • N. Bodor, M. J. Huang, and A. Harget. Neural network studies. 3. prediction of partition coefficients. J. Mol. Struct. (Theochem.), 309:259-266, 1994.
    • (1994) J. Mol. Struct. (Theochem.) , vol.309 , pp. 259-266
    • Bodor, N.1    Huang, M.J.2    Harget, A.3
  • 4
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50:1873-1896, 1989.
    • (1989) International Journal of Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 5
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, F. Cowan, and P. Grant. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 2:302-309, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, F.2    Grant, P.3
  • 7
    • 0032112162 scopus 로고    scopus 로고
    • Towards a principled methodology for neural network design and performance evaluation in qsar; Application to the prediction of logp
    • A. Duprat, T. Huynh, and G. Dreyfus. Towards a principled methodology for neural network design and performance evaluation in qsar; application to the prediction of logp. J. Chem. Inf. Comp. Sci., 38:586-594, 1998.
    • (1998) J. Chem. Inf. Comp. Sci. , vol.38 , pp. 586-594
    • Duprat, A.1    Huynh, T.2    Dreyfus, G.3
  • 8
    • 0141967804 scopus 로고
    • Dynamic system identification: Experiment design and data analysis
    • Academic Press
    • G. C. Goodwin and R.L. Payne. Dynamic system identification: Experiment design and data analysis. Mathematics in Science and Engineering, Academic Press, 136, 1977.
    • (1977) Mathematics in Science and Engineering , pp. 136
    • Goodwin, G.C.1    Payne, R.L.2
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 0023104537 scopus 로고
    • Model selection and validation methods for non-linear systems
    • I. J. Leontaritis and S. A. Billings. Model selection and validation methods for non-linear systems. International Journal of Control, 45:311-341, 1987.
    • (1987) International Journal of Control , vol.45 , pp. 311-341
    • Leontaritis, I.J.1    Billings, S.A.2
  • 14
    • 0034332411 scopus 로고    scopus 로고
    • Withdrawing an example from the training set: An analytic estimation of its effect on a nonlinear parameterised model
    • G. Monari and G. Dreyfus. Withdrawing an example from the training set: an analytic estimation of its effect on a nonlinear parameterised model. Neurocomputing, 35:195-201, 2000.
    • (2000) Neurocomputing , vol.35 , pp. 195-201
    • Monari, G.1    Dreyfus, G.2
  • 15
    • 0013370796 scopus 로고    scopus 로고
    • Local overfitting control via leverages
    • G. Monari and G. Dreyfus. Local overfitting control via leverages. Neural Computation, 14(6): 1481-1506, 2002.
    • (2002) Neural Computation , vol.14 , Issue.6 , pp. 1481-1506
    • Monari, G.1    Dreyfus, G.2
  • 20
    • 0034284052 scopus 로고    scopus 로고
    • Initialization by selection for wavelet network training
    • Y. Oussar and G. Dreyfus. Initialization by selection for wavelet network training. Neurocomputing, 34:131-143, 2000.
    • (2000) Neurocomputing , vol.34 , pp. 131-143
    • Oussar, Y.1    Dreyfus, G.2
  • 22
    • 0017509055 scopus 로고
    • On model structure testing in system identification
    • T. Soederstroem. On model structure testing in system identification. International Journal of Control, 26:1-18, 1977.
    • (1977) International Journal of Control , vol.26 , pp. 1-18
    • Soederstroem, T.1
  • 26
    • 0028698143 scopus 로고
    • The selection of neural models of nonlinear dynamical systems by statistical tests
    • J. Vlontzos, J. Hwang, and E. Wilson, editors
    • D. Urbani, P. Roussel-Ragot, L. Personnaz, and G. Dreyfus. The selection of neural models of nonlinear dynamical systems by statistical tests. In J. Vlontzos, J.Hwang, and E. Wilson, editors, Neural Networks for Signal Processing IV, pages 229-237, 1993.
    • (1993) Neural Networks for Signal Processing IV , pp. 229-237
    • Urbani, D.1    Roussel-Ragot, P.2    Personnaz, L.3    Dreyfus, G.4
  • 27
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • P. Vincent and Y. Bengio. Kernel matching pursuit. Machine Learning, 48:165-187, 2001.
    • (2001) Machine Learning , vol.48 , pp. 165-187
    • Vincent, P.1    Bengio, Y.2
  • 29
    • 84890531928 scopus 로고    scopus 로고
    • Using learning-based filters to detect rule-based filtering obsolescence
    • F. Wolinski, F. Vichot, and M. Stricker. Using learning-based filters to detect rule-based filtering obsolescence. In Proceedings RIAO'2000, 2000.
    • (2000) Proceedings RIAO'2000
    • Wolinski, F.1    Vichot, F.2    Stricker, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.