메뉴 건너뛰기




Volumn 3, Issue , 2003, Pages 1383-1398

MLPs (mono-layer polynomials and multi-layer perceptrons) for nonlinear modeling

Author keywords

Additive procedure; Approximate leave one out scores; Confidence intervals; Input variable selection; Jacobian matrix conditioning; Model approval; Model selection; Neural networks; Orthogonalization procedure; Overfitting avoidance; Polynomials; Statistical tests

Indexed keywords

CONFIDENCE INTERVAL; INPUT VARIABLE SELECTION; JACOBIANS; LEAVE-ONE-OUT; MODEL SELECTION; ORTHOGONALIZATION; OVERFITTING;

EID: 0346825283     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (50)

References (26)
  • 2
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • U. Anders and O. Korn. Model selection in neural networks. Neural Networks 12: 309- 323, 1999.
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 5
    • 0023847349 scopus 로고
    • Prediction-error estimation algorithm for non-linear outputaffine systems
    • S. Chen and S. A. Billings. Prediction-error estimation algorithm for non-linear outputaffine systems. Int. Journal of Control 47(1): 309-332, 1988.
    • (1988) Int Journal of Control , vol.47 , Issue.1 , pp. 309-332
    • Chen, S.1    Billings, S.A.2
  • 6
    • 0024771664 scopus 로고
    • Orthogonal least-squares methods and their application to non-linear system identification
    • S. Chen, A. Billings and W. Luo. Orthogonal least-squares methods and their application to non-linear system identification. Int. Journal of Control 50(5): 1873-1896, 1989.
    • (1989) Int Journal of Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, A.2    Luo, W.3
  • 11
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • T.-Y. Kwok and D.-Y. Yeung. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks 8(3): 630-645, 1997a.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 12
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • T.-Y. Kwok and D.-Y. Yeung. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks 8(5): 1131- 1148, 1997b.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 14
    • 0023104537 scopus 로고
    • Model selection and validation methods for non-linear systems
    • I. J. Leontaritis and S. A. Billings. Model selection and validation methods for non-linear systems. Int. J. Control 45(1): 311-341, 1988.
    • (1988) Int. J. Control , vol.45 , Issue.1 , pp. 311-341
    • Leontaritis, I.J.1    Billings, S.A.2
  • 15
    • 0003257214 scopus 로고
    • Prediction risk and architecture selection for neural networks
    • V. Cherkassy, J. H. Friedman and H. Wechsler (eds.), NATO ASI Series, Springer Verlag
    • J. Moody. Prediction risk and architecture selection for neural networks. In V. Cherkassy, J. H. Friedman and H. Wechsler (eds.), From statistics to neural networks: theory and pattern recognition applications, NATO ASI Series, Springer Verlag, 1994.
    • (1994) From Statistics to Neural Networks: Theory and Pattern Recognition Applications
    • Moody, J.1
  • 17
    • 0033561894 scopus 로고    scopus 로고
    • On cross-validation for model selection
    • I. Rivals and L. Personnaz. On cross-validation for model selection. Neural Computation 11(4): 863-870, 1999.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 863-870
    • Rivals, I.1    Personnaz, L.2
  • 18
    • 0343090467 scopus 로고    scopus 로고
    • Construction of confidence intervals for neural networks based on least squares estimation
    • I. Rivals and L. Personnaz. Construction of confidence intervals for neural networks based on least squares estimation. Neural Networks 13(1): 463-484, 2000a.
    • (2000) Neural Networks , vol.13 , Issue.1 , pp. 463-484
    • Rivals, I.1    Personnaz, L.2
  • 20
    • 0042525842 scopus 로고    scopus 로고
    • Neural network construction and selection in nonlinear modeling
    • to appear
    • I. Rivals and L. Personnaz. Neural network construction and selection in nonlinear modeling. IEEE Transactions on Neural Networks, to appear 2003a.
    • (2003) IEEE Transactions on Neural Networks
    • Rivals, I.1    Personnaz, L.2
  • 21
    • 84890454436 scopus 로고    scopus 로고
    • Jacobian conditioning analysis for model validation
    • to appear
    • I. Rivals and L. Personnaz. Jacobian conditioning analysis for model validation. Neural Computation, to appear 2003b.
    • (2003) Neural Computation
    • Rivals, I.1    Personnaz, L.2
  • 26
    • 0033751614 scopus 로고    scopus 로고
    • Bayesian nonlinear model selection and neural networks: A conjugate prior approach
    • J.-P. Vila, V.Wagner and P. Neveu. Bayesian nonlinear model selection and neural networks: a conjugate prior approach. IEEE Transactions on Neural Networks 11(2): 265-278, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.11 , Issue.2 , pp. 265-278
    • Vila, J.-P.1    Wagner, V.2    Neveu, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.