메뉴 건너뛰기




Volumn 28, Issue 4, 2011, Pages 782-790

A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints

Author keywords

Aerobic storage; Artificial neural networks; Beef fillets; FTIR; Machine learning; Meat spoilage; Partial least squares regression; Pattern recognition

Indexed keywords

ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; BACTERIAL COUNT; BIOLOGICAL MODEL; CATTLE; COMPARATIVE STUDY; FOOD CONTROL; INFRARED SPECTROSCOPY; MEAT; METHODOLOGY; MICROBIOLOGY; REGRESSION ANALYSIS;

EID: 79954575819     PISSN: 07400020     EISSN: 10959998     Source Type: Journal    
DOI: 10.1016/j.fm.2010.05.014     Document Type: Article
Times cited : (66)

References (59)
  • 1
    • 57049127047 scopus 로고    scopus 로고
    • Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics
    • Ammor M.S., Argyri A., Nychas G.-J.E. Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics. Meat Sci. 2009, 81:507-514.
    • (2009) Meat Sci. , vol.81 , pp. 507-514
    • Ammor, M.S.1    Argyri, A.2    Nychas, G.-J.E.3
  • 2
    • 76949101187 scopus 로고    scopus 로고
    • Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks
    • Argyri A.A., Panagou E.Z., Tarantilis P.A., Polysiou M., Nychas G.-J.E. Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks. Sens. Actuators B: Chem. 2010, 145:146-154.
    • (2010) Sens. Actuators B: Chem. , vol.145 , pp. 146-154
    • Argyri, A.A.1    Panagou, E.Z.2    Tarantilis, P.A.3    Polysiou, M.4    Nychas, G.-J.E.5
  • 3
    • 55249087817 scopus 로고    scopus 로고
    • Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification
    • Balasubramanian S., Panigrahi S., Logue C.M., Gu H., Marchello M. Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. J. Food Eng. 2009, 91:91-98.
    • (2009) J. Food Eng. , vol.91 , pp. 91-98
    • Balasubramanian, S.1    Panigrahi, S.2    Logue, C.M.3    Gu, H.4    Marchello, M.5
  • 4
    • 4444267081 scopus 로고    scopus 로고
    • Combase: a common database on microbial responses in food environments
    • Baranyi J., Tamplin L.M. Combase: a common database on microbial responses in food environments. J. Food Prot. 2004, 67:1967-1971.
    • (2004) J. Food Prot. , vol.67 , pp. 1967-1971
    • Baranyi, J.1    Tamplin, L.M.2
  • 5
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basheer I.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43:3-31.
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 7
    • 0003173790 scopus 로고    scopus 로고
    • Discrimination of Arabica and Robusta in instant coffee by Fourier transform infrared spectroscopy and chemometrics
    • Briandet R., Wilson R.H., Kemsley E.K. Discrimination of Arabica and Robusta in instant coffee by Fourier transform infrared spectroscopy and chemometrics. J. Agric. Food Chem. 1996, 44:170-174.
    • (1996) J. Agric. Food Chem. , vol.44 , pp. 170-174
    • Briandet, R.1    Wilson, R.H.2    Kemsley, E.K.3
  • 8
    • 0032196480 scopus 로고    scopus 로고
    • Examination of full fat and reduced fat cheddar cheese during ripening by Fourier Transform Infrared Spectroscopy
    • Chen M., Irudayaraj J., McMahon D.J. Examination of full fat and reduced fat cheddar cheese during ripening by Fourier Transform Infrared Spectroscopy. J. Dairy Sci. 1998, 81:2791-2797.
    • (1998) J. Dairy Sci. , vol.81 , pp. 2791-2797
    • Chen, M.1    Irudayaraj, J.2    McMahon, D.J.3
  • 9
    • 0030296892 scopus 로고    scopus 로고
    • Chemical/biochemical detection of spoilage
    • Dainty R.H. Chemical/biochemical detection of spoilage. Int. J. Food Microbiol. 1996, 33:19-34.
    • (1996) Int. J. Food Microbiol. , vol.33 , pp. 19-34
    • Dainty, R.H.1
  • 10
    • 45849109920 scopus 로고    scopus 로고
    • Meat quality assessment using biophysical methods related to meat structure
    • Damez J.L., Clerjon S. Meat quality assessment using biophysical methods related to meat structure. Meat Sci. 2008, 80:132-149.
    • (2008) Meat Sci. , vol.80 , pp. 132-149
    • Damez, J.L.1    Clerjon, S.2
  • 11
    • 0035746611 scopus 로고    scopus 로고
    • Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends
    • Ellis D.I., Goodacre R. Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends Food Sci. Technol. 2001, 12:414-424.
    • (2001) Trends Food Sci. Technol. , vol.12 , pp. 414-424
    • Ellis, D.I.1    Goodacre, R.2
  • 12
    • 0036269481 scopus 로고    scopus 로고
    • Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning
    • Ellis D.I., Broadhurst D., Kell D.B., Rowland J.J., Goodacre R. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl. Environ. Microbiol. 2002, 68:2822-2828.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 2822-2828
    • Ellis, D.I.1    Broadhurst, D.2    Kell, D.B.3    Rowland, J.J.4    Goodacre, R.5
  • 13
    • 2542426727 scopus 로고    scopus 로고
    • Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning
    • Ellis D.I., Broadhurst D., Goodacre R. Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Anal. Chim. Acta 2004, 514:193-201.
    • (2004) Anal. Chim. Acta , vol.514 , pp. 193-201
    • Ellis, D.I.1    Broadhurst, D.2    Goodacre, R.3
  • 14
    • 28844438769 scopus 로고    scopus 로고
    • Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning
    • Ellis D.I., Broadhurst D., Clarke S.J., Goodacre R. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. Analyst 2005, 130:1648-1654.
    • (2005) Analyst , vol.130 , pp. 1648-1654
    • Ellis, D.I.1    Broadhurst, D.2    Clarke, S.J.3    Goodacre, R.4
  • 16
    • 31044452784 scopus 로고    scopus 로고
    • Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus
    • Esnoz A., Periago P.M., Conesa R., Palop A. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. Int. J. Food Microbiol. 2006, 106:153-158.
    • (2006) Int. J. Food Microbiol. , vol.106 , pp. 153-158
    • Esnoz, A.1    Periago, P.M.2    Conesa, R.3    Palop, A.4
  • 18
    • 0031733749 scopus 로고    scopus 로고
    • Application of artificial neural networks as a non-linear modular modelling technique to describe bacterial growth in chilled food products
    • Geeraerd A.H., Herremans C.H., Cenens C., Van Impe J.F. Application of artificial neural networks as a non-linear modular modelling technique to describe bacterial growth in chilled food products. Int. J. Food Microbiol. 1998, 44:49-68.
    • (1998) Int. J. Food Microbiol. , vol.44 , pp. 49-68
    • Geeraerd, A.H.1    Herremans, C.H.2    Cenens, C.3    Van Impe, J.F.4
  • 19
    • 0000143725 scopus 로고
    • The storage life of non-muscle offals packaged under vacuum or carbon dioxide
    • Gill C.O., Jeremiah L.E. The storage life of non-muscle offals packaged under vacuum or carbon dioxide. Food Microbiol. 1991, 8:339-353.
    • (1991) Food Microbiol. , vol.8 , pp. 339-353
    • Gill, C.O.1    Jeremiah, L.E.2
  • 20
    • 0002192255 scopus 로고
    • The control of microbial spoilage in fresh meats
    • AVI Publishing, Co., Westport, CT, A.M. Pearson, T.R. Dutson (Eds.).
    • Gill C.O. The control of microbial spoilage in fresh meats. Advances in Meat Research: Meat Poultry Microbiology 1986, 49-88. AVI Publishing, Co., Westport, CT. A.M. Pearson, T.R. Dutson (Eds.).
    • (1986) Advances in Meat Research: Meat Poultry Microbiology , pp. 49-88
    • Gill, C.O.1
  • 22
    • 0002045837 scopus 로고    scopus 로고
    • Applications of artificial neural networks to the analysis of multivariate data
    • Oxford University Press, Oxford, H.M. Cartwright (Ed.).
    • Goodacre R. Applications of artificial neural networks to the analysis of multivariate data. Intelligent Data Analysis in Science: a Handbook 2000, 123-152. Oxford University Press, Oxford. H.M. Cartwright (Ed.).
    • (2000) Intelligent Data Analysis in Science: a Handbook , pp. 123-152
    • Goodacre, R.1
  • 25
  • 26
    • 0035648084 scopus 로고    scopus 로고
    • Optimization of computational neural network for its application to the prediction of microbial growth in foods
    • Hervás C., Zurera G., García R.M., Martínez J. Optimization of computational neural network for its application to the prediction of microbial growth in foods. Food Sci. Technol. Int. 2001, 7:159-163.
    • (2001) Food Sci. Technol. Int. , vol.7 , pp. 159-163
    • Hervás, C.1    Zurera, G.2    García, R.M.3    Martínez, J.4
  • 27
  • 28
    • 33847250435 scopus 로고    scopus 로고
    • Applications of artificial neural networks (ANNs) in food science
    • Huang Y., Kangas L.J., Rasco B.A. Applications of artificial neural networks (ANNs) in food science. Crit. Rev. Food Sci. Nutr 2007, 47:113-126.
    • (2007) Crit. Rev. Food Sci. Nutr , vol.47 , pp. 113-126
    • Huang, Y.1    Kangas, L.J.2    Rasco, B.A.3
  • 29
    • 0028290040 scopus 로고
    • Storage of poultry meat under modified atmospheres or vacuum packs: possible role of microbial metabolites as indicator of spoilage
    • Kakouri A., Nychas G.-J.E. Storage of poultry meat under modified atmospheres or vacuum packs: possible role of microbial metabolites as indicator of spoilage. J. Appl. Bacteriol. 1994, 76:163-172.
    • (1994) J. Appl. Bacteriol. , vol.76 , pp. 163-172
    • Kakouri, A.1    Nychas, G.-J.E.2
  • 30
    • 33748574894 scopus 로고    scopus 로고
    • Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups
    • Kelly J.D., Petisco C., Downey G. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups. J. Agric. Food Chem. 2006, 54:6166-6171.
    • (2006) J. Agric. Food Chem. , vol.54 , pp. 6166-6171
    • Kelly, J.D.1    Petisco, C.2    Downey, G.3
  • 32
    • 12144265142 scopus 로고    scopus 로고
    • Sensory evaluation and marketing: measurement of a consumer concept
    • Lee H.S., O'Mahony M. Sensory evaluation and marketing: measurement of a consumer concept. Food Qual. Prefer 2005, 16:227-235.
    • (2005) Food Qual. Prefer , vol.16 , pp. 227-235
    • Lee, H.S.1    O'Mahony, M.2
  • 34
    • 4444281340 scopus 로고    scopus 로고
    • Prediction of physical, color, and sensory characteristics of broiler breasts by visible/near infrared reflectance spectroscopy
    • Liu Y., Lyon B.G., Windham W.R., Lyon C.E., Savage E.M. Prediction of physical, color, and sensory characteristics of broiler breasts by visible/near infrared reflectance spectroscopy. Poultry Sci. 2004, 83:1467-1474.
    • (2004) Poultry Sci. , vol.83 , pp. 1467-1474
    • Liu, Y.1    Lyon, B.G.2    Windham, W.R.3    Lyon, C.E.4    Savage, E.M.5
  • 35
    • 0034946875 scopus 로고    scopus 로고
    • Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity
    • Lou W., Nakai S. Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Res. Int. 2001, 34:573-579.
    • (2001) Food Res. Int. , vol.34 , pp. 573-579
    • Lou, W.1    Nakai, S.2
  • 36
    • 75449100495 scopus 로고    scopus 로고
    • A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils
    • Maggio R.M., Cerretani L., Chiavaro E., Kaufman T.S., Bendini A. A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Control 2010, 21:890-895.
    • (2010) Food Control , vol.21 , pp. 890-895
    • Maggio, R.M.1    Cerretani, L.2    Chiavaro, E.3    Kaufman, T.S.4    Bendini, A.5
  • 37
    • 34547612813 scopus 로고    scopus 로고
    • Modeling and predicting spoilage of cooked, cured meat products by multivariate analysis
    • Mataragas M., Skandamis P., Nychas G.-J.E., Drosinos E.H. Modeling and predicting spoilage of cooked, cured meat products by multivariate analysis. Meat Sci. 2007, 77:348-356.
    • (2007) Meat Sci. , vol.77 , pp. 348-356
    • Mataragas, M.1    Skandamis, P.2    Nychas, G.-J.E.3    Drosinos, E.H.4
  • 39
    • 0002565272 scopus 로고
    • Microbial spoilage of meats
    • Applied Science Publishers, London, R. Davies (Ed.).
    • McMeekin T.A. Microbial spoilage of meats. Developments in Food Microbiology 1982, 1-40. Applied Science Publishers, London. R. Davies (Ed.).
    • (1982) Developments in Food Microbiology , pp. 1-40
    • McMeekin, T.A.1
  • 41
    • 0030786958 scopus 로고    scopus 로고
    • Spoilage process and proteolysis in chicken as noted by HPLC method
    • Nychas G.-J.E., Tassou C.C. Spoilage process and proteolysis in chicken as noted by HPLC method. J. Sci. Food Agric. 1997, 74:199-208.
    • (1997) J. Sci. Food Agric. , vol.74 , pp. 199-208
    • Nychas, G.-J.E.1    Tassou, C.C.2
  • 42
    • 0023895606 scopus 로고
    • Glucose: a key substrate in microbial spoilage of meat and meat products
    • Nychas G.-J.E., Dillon D.M., Board R.G. Glucose: a key substrate in microbial spoilage of meat and meat products. Biotechnol. Appl. Biochem. 1988, 10:203-231.
    • (1988) Biotechnol. Appl. Biochem. , vol.10 , pp. 203-231
    • Nychas, G.-J.E.1    Dillon, D.M.2    Board, R.G.3
  • 43
    • 0002776499 scopus 로고    scopus 로고
    • Chemical changes in stored meat
    • Blackie Academic and Professional, London, R.G. Board, A.R. Davies (Eds.).
    • Nychas G.-J.E., Drosinos E.H., Board R.G. Chemical changes in stored meat. The Microbiology of Meat and Poultry 1998, 288-326. Blackie Academic and Professional, London. R.G. Board, A.R. Davies (Eds.).
    • (1998) The Microbiology of Meat and Poultry , pp. 288-326
    • Nychas, G.-J.E.1    Drosinos, E.H.2    Board, R.G.3
  • 45
    • 38349070929 scopus 로고    scopus 로고
    • Predicting survival of Escherichia coli O157:H7 in dry fermented sausage using artificial neural networks
    • Palanichamy A., Jayas D.S., Holley R.A. Predicting survival of Escherichia coli O157:H7 in dry fermented sausage using artificial neural networks. J. Food Prot. 2008, 71:6-12.
    • (2008) J. Food Prot. , vol.71 , pp. 6-12
    • Palanichamy, A.1    Jayas, D.S.2    Holley, R.A.3
  • 46
    • 41849145354 scopus 로고    scopus 로고
    • A radial basis function neural network approach to determine the survival of Listeria monocytogenes in katiki, a traditional Greek soft cheese
    • Panagou E.Z. A radial basis function neural network approach to determine the survival of Listeria monocytogenes in katiki, a traditional Greek soft cheese. J. Food Prot. 2008, 71(4):750-759.
    • (2008) J. Food Prot. , vol.71 , Issue.4 , pp. 750-759
    • Panagou, E.Z.1
  • 48
    • 33846901350 scopus 로고    scopus 로고
    • Use of artificial neural networks and a gamma-concept-based approach to model growth of and bacteriocin production by Streptococcus macedonicus ACA-DC 198 under simulated conditions of kasseri cheese production
    • Poirazi P., Leroy F., Georgalaki M.D., Aktypis A., Vuyst L., Tsakalidou E. Use of artificial neural networks and a gamma-concept-based approach to model growth of and bacteriocin production by Streptococcus macedonicus ACA-DC 198 under simulated conditions of kasseri cheese production. Appl. Environ. Microbiol. 2007, 73:768-776.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 768-776
    • Poirazi, P.1    Leroy, F.2    Georgalaki, M.D.3    Aktypis, A.4    Vuyst, L.5    Tsakalidou, E.6
  • 49
    • 67650076124 scopus 로고    scopus 로고
    • Application of near infrared reflectance spectroscopy to predict meat and meat products quality: a review
    • Prieto N., Roehe R., Lavín P., Batten G., Andrés S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: a review. Meat Sci. 2009, 83:175-186.
    • (2009) Meat Sci. , vol.83 , pp. 175-186
    • Prieto, N.1    Roehe, R.2    Lavín, P.3    Batten, G.4    Andrés, S.5
  • 50
    • 20444437641 scopus 로고    scopus 로고
    • Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat
    • Rajamäki T., Alakomi H.L., Ritvanen T., Skyttä E., Smolander M., Ahvenainen R. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control 2006, 17:5-13.
    • (2006) Food Control , vol.17 , pp. 5-13
    • Rajamäki, T.1    Alakomi, H.L.2    Ritvanen, T.3    Skyttä, E.4    Smolander, M.5    Ahvenainen, R.6
  • 51
    • 84952935778 scopus 로고    scopus 로고
    • Model fitting and uncertainty
    • CRC Press, Boca Raton, FL, R.C. McKellar, X. Lu (Eds.).
    • Ratkowsky D.A. Model fitting and uncertainty. Modeling Microbial Responses in Food 2004, 152-196. CRC Press, Boca Raton, FL. R.C. McKellar, X. Lu (Eds.).
    • (2004) Modeling Microbial Responses in Food , pp. 152-196
    • Ratkowsky, D.A.1
  • 52
    • 0029845515 scopus 로고    scopus 로고
    • Indices for performance evaluation of predictive model in food microbiology
    • Ross T. Indices for performance evaluation of predictive model in food microbiology. J. Appl. Microbiol. 1996, 81:501-508.
    • (1996) J. Appl. Microbiol. , vol.81 , pp. 501-508
    • Ross, T.1
  • 53
    • 70350675244 scopus 로고    scopus 로고
    • Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution
    • Singh K.P., Ojha P., Malik A., Jain G. Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemom. Intell. Lab. Syst. 2009, 99:150-160.
    • (2009) Chemom. Intell. Lab. Syst. , vol.99 , pp. 150-160
    • Singh, K.P.1    Ojha, P.2    Malik, A.3    Jain, G.4
  • 54
    • 33748372942 scopus 로고    scopus 로고
    • Detection of Escherichia coli in packaged alfalfa sprouts with an electronic nose and an artificial neural network
    • Siripatrawan U., Linz J.E., Harte B.R. Detection of Escherichia coli in packaged alfalfa sprouts with an electronic nose and an artificial neural network. J. Food Prot. 2006, 69:1844-1850.
    • (2006) J. Food Prot. , vol.69 , pp. 1844-1850
    • Siripatrawan, U.1    Linz, J.E.2    Harte, B.R.3
  • 55
    • 36348933233 scopus 로고    scopus 로고
    • st centrury
    • st centrury. Meat Sci. 2008, 78:3-13.
    • (2008) Meat Sci. , vol.78 , pp. 3-13
    • Sofos, J.N.1
  • 58
    • 73549105693 scopus 로고    scopus 로고
    • Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy
    • Versari A., Parpinello G.P., Scazzina F., Rio D.D. Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy. Food Control 2010, 21:786-789.
    • (2010) Food Control , vol.21 , pp. 786-789
    • Versari, A.1    Parpinello, G.P.2    Scazzina, F.3    Rio, D.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.