-
3
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R.A. Fisher The use of multiple measurements in taxonomic problems Annals of Eugenics 7 1936 179 188
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
4
-
-
85133386144
-
Distance metric learning with application to clustering with side-information
-
E.P. Xing, A.Y. Ng, M.I. Jordan, S. Russell, Distance metric learning with application to clustering with side-information, in: Advances in Neural Information Processing Systems (NIPS), vol. 15, 2002, pp. 505512.
-
(2002)
Advances in Neural Information Processing Systems (NIPS)
, vol.15
, pp. 505-512
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
Russell, S.4
-
5
-
-
21844452080
-
Integrating constraints and metric learning in semi-supervised clustering
-
M. Bilenko, S. Basu, R.J. Mooney, Integrating constraints and metric learning in semi-supervised clustering, in: ICML, vol. 69, 2004, p. 11.
-
(2004)
ICML
, vol.69
, pp. 11
-
-
Bilenko, M.1
Basu, S.2
Mooney, R.J.3
-
6
-
-
14344262274
-
Locally linear metric adaptation for semi-supervised clustering
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
H. Chang, D.-Y. Yeung, Locally linear metric adaptation for semi-supervised clustering, in: ICML, vol. 69, 2004, pp. 153160. (Pubitemid 40290803)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 153-160
-
-
Chang, H.1
Yeung, D.-Y.2
-
7
-
-
33646084850
-
Locally linear metric adaptation with application to semi-supervised clustering and image retrieval
-
H. Chang, and D.-Y. Yeung Locally linear metric adaptation with application to semi-supervised clustering and image retrieval Pattern Recognition 39 7 2006 1253 1264
-
(2006)
Pattern Recognition
, vol.39
, Issue.7
, pp. 1253-1264
-
-
Chang, H.1
Yeung, D.-Y.2
-
8
-
-
33244489358
-
Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints
-
DOI 10.1016/j.patcog.2005.12.004, PII S0031320305004577
-
D.-Y. Yeung, and H. Chang Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints Pattern Recognition 39 5 2006 1007 1010 (Pubitemid 43276113)
-
(2006)
Pattern Recognition
, vol.39
, Issue.5
, pp. 1007-1010
-
-
Yeung, D.-Y.1
Chang, H.2
-
9
-
-
12244300524
-
A probabilistic framework for semi-supervised clustering
-
KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
S. Basu, M. Bilenko, R.J. Mooney, A probabilistic framework for semi-supervised clustering, in: KDD, 2004, pp. 5968. (Pubitemid 40114916)
-
(2004)
KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 59-68
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
10
-
-
33749257955
-
Distance metric learning for large margin nearest neighbor classification
-
K.Q. Weinberger, J. Blitzer, L.K. Saul, Distance metric learning for large margin nearest neighbor classification, in: Advances in Neural Information Processing Systems, vol. 18, 2006, pp. 14731480.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 1473-1480
-
-
Weinberger, K.Q.1
Blitzer, J.2
Saul, L.K.3
-
11
-
-
84864030708
-
Metric learning by collapsing classes
-
A. Globerson, S.T. Roweis, Metric learning by collapsing classes, in: Advances in Neural Information Processing Systems, vol. 18, 2006, pp. 451458.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 451-458
-
-
Globerson, A.1
Roweis, S.T.2
-
12
-
-
57749180835
-
Distance metric learning versus fisher discriminant analysis
-
B. Alipanahi, M. Biggs, A. Ghodsi, Distance metric learning versus fisher discriminant analysis, in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 2008, pp. 598603.
-
(2008)
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence
, pp. 598-603
-
-
Alipanahi, B.1
Biggs, M.2
Ghodsi, A.3
-
13
-
-
84945116550
-
Sliced inverse regression for dimension reduction (with discussion)
-
K. Li Sliced inverse regression for dimension reduction (with discussion) Journal of the American Statistical Association 86 1991 316 342
-
(1991)
Journal of the American Statistical Association
, vol.86
, pp. 316-342
-
-
Li, K.1
-
15
-
-
84950441056
-
On principal hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
-
K. Li On principal hessian directions for data visualization and dimension reduction: another application of Stein's lemma Journal of the American Statistical Association 87 1992 1025 1039
-
(1992)
Journal of the American Statistical Association
, vol.87
, pp. 1025-1039
-
-
Li, K.1
-
16
-
-
21144467148
-
Exploring regression structure using nonparametric functional estimation
-
A.M. Samarov Exploring regression structure using nonparametric functional estimation Journal of the American Statistical Association 88 1993 836 847
-
(1993)
Journal of the American Statistical Association
, vol.88
, pp. 836-847
-
-
Samarov, A.M.1
-
17
-
-
0012657603
-
Dimension reduction and visualization in discriminant analysis (with discussion)
-
R.D. Cook, and X. Yin Dimension reduction and visualization in discriminant analysis (with discussion) Australian & New-Zealand Journal of Statistics 43 2001 147 199 (Pubitemid 33613436)
-
(2001)
Australian and New Zealand Journal of Statistics
, vol.43
, Issue.2
, pp. 147-199
-
-
Cook, R.D.1
Yin, X.2
-
18
-
-
0035528162
-
Structure adaptive approach for dimension reduction
-
M. Hristache, A. Juditsky, J. Polzehl, and V. Spokoiny Structure adaptive approach for dimension reduction The Annals of Statistics 29 2001 1537 1566 (Pubitemid 33405985)
-
(2001)
Annals of Statistics
, vol.29
, Issue.6
, pp. 1537-1566
-
-
Hristache, M.1
Juditsky, A.2
Polzehl, J.3
Spokoiny, V.4
-
19
-
-
1942450610
-
Feature extraction by non-parametric mutual information maximization
-
K. Torkkola Feature extraction by non-parametric mutual information maximization Journal of Machine Learning Research 3 2003 1415 1438
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
20
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
K. Fukumizu, F.R. Bach, and M.I. Jordan Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces Journal of Machine Learning Research 5 2004 73 99
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
21
-
-
33645527646
-
Prediction by supervised principal components
-
DOI 10.1198/016214505000000628
-
E. Bair, T. Hastie, D. Paul, and R. Tibshirani Prediction by supervised principal components Journal of the American Statistical Association 101 2006 119 137 (Pubitemid 43500030)
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 119-137
-
-
Bair, E.1
Hastie, T.2
Paul, D.3
Tibshirani, R.4
-
23
-
-
34547968745
-
Regression on manifolds using kernel dimension reduction
-
J. Nilsson, F. Sha, M.I. Jordan, Regression on manifolds using kernel dimension reduction, in: ICML, vol. 227, 2007, pp. 697704.
-
(2007)
ICML
, vol.227
, pp. 697-704
-
-
Nilsson, J.1
Sha, F.2
Jordan, M.I.3
-
24
-
-
33646528415
-
Measuring statistical dependence with Hilbert-Schmidt norms
-
A. Gretton, O. Bousquet, A.J. Smola, B. Schlkopf, Measuring statistical dependence with HilbertSchmidt norms, in: Proceedings Algorithmic Learning Theory (ALT), vol. 3734, 2005, pp. 6377.
-
(2005)
Proceedings Algorithmic Learning Theory (ALT)
, vol.3734
, pp. 63-77
-
-
Gretton, A.1
-
25
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
L. Song, A.J. Smola, A. Gretton, K.M. Borgwardt, J. Bedo, Supervised feature selection via dependence estimation, in: ICML, vol. 227, 2007, pp. 823830.
-
(2007)
ICML
, vol.227
, pp. 823-830
-
-
Song, L.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
Bedo, J.5
-
26
-
-
85162021460
-
Colored maximum variance unfolding
-
L. Song, A.J. Smola, K.M. Borgwardt, A. Gretton, Colored maximum variance unfolding, in: Advances in neural information processing systems, vol. 20, 2008, pp. 13851392.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1385-1392
-
-
Song, L.1
Smola, A.J.2
Borgwardt, K.M.3
Gretton, A.4
-
27
-
-
34547972314
-
A dependence maximization view of clustering
-
L. Song, A.J. Smola, A. Gretton, K.M. Borgwardt, A dependence maximization view of clustering, in: ICML, vol. 227, 2007, pp. 815822.
-
(2007)
ICML
, vol.227
, pp. 815-822
-
-
Song, L.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
-
32
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
DOI 10.1073/pnas.96.12.6745
-
U. Alon, N. Barkai, D.A. Notterman, K. Gishdagger, S. Ybarradagger, D. Mackdagger, and A.J. Levine Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proceedings of the National Academy of Sciences of the United States of America 96 12 1999 6745 6750 (Pubitemid 29274954)
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.12
, pp. 6745-6750
-
-
Alon, U.1
Barka, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
33
-
-
0034598746
-
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
-
DOI 10.1038/35000501
-
A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore, J. Hudson, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, R. Levy, W. Wilson, M.R. Grever, J.C. Byrd, D. Botstein, P.O. Brown, and L.M. Staudt Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling Nature 403 6769 2000 503 511 (Pubitemid 30082188)
-
(2000)
Nature
, vol.403
, Issue.6769
, pp. 503-511
-
-
Alizadeh, A.A.1
Elsen, M.B.2
Davis, R.E.3
Ma, Ch.L.4
Lossos, I.S.5
Rosenwald, A.6
Boldrick, J.C.7
Sabet, H.8
Tran, T.9
Yu, X.10
Powell, J.I.11
Yang, L.12
Maru, G.E.13
Moore, T.14
Hudson Jr., J.15
Lu, L.16
Lewis, D.B.17
Tibshirani, R.18
Sherlock, G.19
Chan, W.C.20
Greiner, T.C.21
Weisenburger, D.D.22
Armitage, J.O.23
Warnke, R.24
Levy, R.25
Wilson, W.26
Grever, M.R.27
Byrd, J.C.28
Botstein, D.29
Brown, P.O.30
Staudt, L.M.31
more..
-
34
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
DOI 10.1038/89044
-
J. Khan, J.S. Wei, M. Ringnr, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, and P.S. Meltzer Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks Nature Medicine 7 6 2001 673 679 (Pubitemid 32588022)
-
(2001)
Nature Medicine
, vol.7
, Issue.6
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
35
-
-
34547830852
-
Gene selection via the BAHSIC family of algorithms
-
L. Song, J. Bedo, K.M. Borgwardt, A. Gretton, and A.J. Smola Gene selection via the BAHSIC family of algorithms Bioinformatics 23 2007 490 498
-
(2007)
Bioinformatics
, vol.23
, pp. 490-498
-
-
Song, L.1
Bedo, J.2
Borgwardt, K.M.3
Gretton, A.4
Smola, A.J.5
-
36
-
-
0000957593
-
Principal components regression in exploratory statistical research
-
W.F. Massy Principal components regression in exploratory statistical research Journal of the American Statistical Association 60 1965 234 256
-
(1965)
Journal of the American Statistical Association
, vol.60
, pp. 234-256
-
-
Massy, W.F.1
-
37
-
-
26444566340
-
Contour regression: A general approach to dimension reduction
-
DOI 10.1214/009053605000000192
-
B. Li, H. Zha, F. Chiaromonte, Contour regression: a general approach to dimension reduction, in: ICML, vol. 33, 2005, pp. 15801616. (Pubitemid 41423981)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1580-1616
-
-
Li, B.1
Zha, H.2
Chiaromonte, F.3
-
38
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
-
DOI 10.1056/NEJMoa012914
-
A. Rosenwald, G. Wright, W.C. Chan, J.M. Connors, E. Campo, R.I. Fisher, R.D. Gascoyne, H.K. Muller-Hermelink, E.B. Smeland, and L.M. Staudt The use of molecular profiling to predict survival after chemotherapy for diffuse large b-cell lymphoma Annals of Statistics 346 4 2002 1937 1947 (Pubitemid 34651353)
-
(2002)
New England Journal of Medicine
, vol.346
, Issue.25
, pp. 1937-1947
-
-
Rosenwald, A.1
Wright, G.2
Chan, W.C.3
Connors, J.M.4
Campo, E.5
Fisher, R.I.6
Gascoyne, R.D.7
Konrad Muller-Hermelink, H.8
Smeland, E.B.9
Giltnane, J.M.10
Hurt, E.M.11
Zhao, H.12
Averett, L.13
Yang, L.14
Wilson, W.H.15
Jaffe, E.S.16
Simon, R.17
Klausner, R.D.18
Powell, J.19
Duffey, P.L.20
Longo, D.L.21
Greiner, T.C.22
Weisenburger, D.D.23
Sanger, W.G.24
Dave, B.J.25
Lynch, J.C.26
Vose, J.27
Armitage, J.O.28
Montserrat, E.29
Lopez-Guillermo, A.30
Grogan, T.M.31
Miller, T.P.32
Leblanc, M.33
Ott, G.34
Kvaloy, S.35
Delabie, J.36
Holte, H.37
Krajci, P.38
Stokke, T.39
Staudt, L.M.40
more..
-
40
-
-
0001681052
-
The collinearity problem in linear regression
-
S. Wold, H. Ruhe, H. Wold, and W.J. Dunn III The collinearity problem in linear regression The partial least squares (PLS) approach to generalized inverse, in: SIAM Journal of Scientific and Statistical Computations vol. 5 1984 735 743
-
(1984)
The Partial Least Squares (PLS) Approach to Generalized Inverse, In: SIAM Journal of Scientific and Statistical Computations
, vol.5
, pp. 735-743
-
-
Wold, S.1
Ruhe, H.2
Wold, H.3
Dunn Iii, W.J.4
-
41
-
-
0012184060
-
A survey of partial least squares (pls) methods, with emphasis on the two-block case
-
University of Washington
-
J.A. Wegelin, A survey of partial least squares (pls) methods, with emphasis on the two-block case, Technical Report, University of Washington, 2000.
-
(2000)
Technical Report
-
-
Wegelin, J.A.1
-
42
-
-
0038259120
-
Kernel partial least squares regression in reproducing kernel Hilbert space
-
R. Rosipal, and L.J. Trejo Kernel partial least squares regression in reproducing kernel Hilbert space Journal of Machine Learning Research 2 2001 97 123
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.J.2
-
44
-
-
1942516826
-
Kernel pls-svc for linear and nonlinear classification
-
R. Rosipal, L.J. Trejo, B. Matthews, Kernel pls-svc for linear and nonlinear classification, in: Proceedings of International Conference on Machine Learning (ICML), vol. 20, 2003, p. 640.
-
(2003)
Proceedings of International Conference on Machine Learning (ICML)
, vol.20
, pp. 640
-
-
Rosipal, R.1
Trejo, L.J.2
Matthews, B.3
-
45
-
-
10944232592
-
Primal space sparse kernel partial least squares regression for large problems
-
L. Hoegaerts, J.A.K. Suykens, J. Vanderwalle, B.D. Moor, Primal space sparse kernel partial least squares regression for large problems, in: Proceedings of International Joint Conference on Neural Networks (IJCNN), 2004.
-
(2004)
Proceedings of International Joint Conference on Neural Networks (IJCNN)
-
-
Hoegaerts, L.1
Suykens, J.A.K.2
Vanderwalle, J.3
Moor, B.D.4
-
46
-
-
84864063320
-
Sparse kernel orthonormalized pls for feature extraction in large data sets
-
J. Arenas-Garca, K.B. Petersen, L.K. Hansen, Sparse kernel orthonormalized pls for feature extraction in large data sets, in: Advances in Neural Information Processing Systems, 2007, p. 33.
-
(2007)
Advances in Neural Information Processing Systems
, pp. 33
-
-
Arenas-García, J.1
-
47
-
-
0037624001
-
Kernel partial least squares for nonlinear regression and discrimination
-
R. Rosipal Kernel partial least squares for nonlinear regression and discrimination Neural Network World 13 3 2003 291 300
-
(2003)
Neural Network World
, vol.13
, Issue.3
, pp. 291-300
-
-
Rosipal, R.1
-
48
-
-
0000107975
-
Relations between two sets of variables
-
H. Hotelling Relations between two sets of variables Biometrika 28 1936 312 377
-
(1936)
Biometrika
, vol.28
, pp. 312-377
-
-
Hotelling, H.1
-
49
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
DOI 10.1162/0899766042321814
-
D. Hardoon, S. Szedmak, and J. Shawe-taylor Canonical correlation analysis: an overview with application to learning methods Neural Computation 16 12 2004 2639 2664 (Pubitemid 39604012)
-
(2004)
Neural Computation
, vol.16
, Issue.12
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
51
-
-
33745819990
-
Overview and recent advances in partial least squares
-
DOI 10.1007/11752790-2, Subspace, Latent Structure and Feature Selection - Statistical and Optimization Perspectives Workshop, SLSFS 2005, Revised Selected Papers
-
R. Rosipal, and N. Krmer Overview and recent advances in partial least squares Subspace, Latent Structure and Feature Selection 2006 34 51 (Pubitemid 44029878)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3940
, pp. 34-51
-
-
Rosipal, R.1
Kramer, N.2
-
53
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. Roweis, and L. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 2000 2323 2326 (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
54
-
-
84880203756
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: Advances in Neural Information Processing Systems, vol. 1, 2002, pp. 585592.
-
(2002)
Advances in Neural Information Processing Systems
, vol.1
, pp. 585-592
-
-
Belkin, M.1
Niyogi, P.2
|