메뉴 건너뛰기




Volumn 39, Issue 7, 2006, Pages 1253-1264

Locally linear metric adaptation with application to semi-supervised clustering and image retrieval

Author keywords

Content based image retrieval; Gradient method; Iterative majorization; Linear transformation; Locally linear metric adaptation; Metric learning; Semi supervised clustering; Spectral method; UCI repository

Indexed keywords

ALGORITHMS; COMPUTER VISION; ITERATIVE METHODS; METRIC SYSTEM; PATTERN RECOGNITION;

EID: 33646084850     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2005.12.012     Document Type: Article
Times cited : (45)

References (28)
  • 1
    • 27644572056 scopus 로고
    • Optimization of k-nearest neighbor density estimates
    • Fukunaga K., and Hostetler L. Optimization of k-nearest neighbor density estimates. IEEE Trans. Inf. Theory 19 3 (1973) 320-326
    • (1973) IEEE Trans. Inf. Theory , vol.19 , Issue.3 , pp. 320-326
    • Fukunaga, K.1    Hostetler, L.2
  • 2
    • 0019610270 scopus 로고
    • The optimal distance measure for nearest neighbor classification
    • Short R.D., and Fukunaga K. The optimal distance measure for nearest neighbor classification. IEEE Trans. Inf. Theory 27 5 (1981) 622-627
    • (1981) IEEE Trans. Inf. Theory , vol.27 , Issue.5 , pp. 622-627
    • Short, R.D.1    Fukunaga, K.2
  • 5
    • 33646103857 scopus 로고    scopus 로고
    • J.H. Friedman, Flexible metric nearest neighbor classification, Technical Report, Department of Statistics, Stanford University, Stanford, CA, USA, November 1994.
  • 7
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • Lowe D.G. Similarity metric learning for a variable-kernel classifier. Neural Computation 7 1 (1995) 72-85
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.G.1
  • 8
    • 33751573445 scopus 로고    scopus 로고
    • J. Peng, D.R. Heisterkamp, H.K. Dai, Adaptive kernel metric nearest neighbor classification, in: Proceedings of the 16th International Conference on Pattern Recognition, 11-15 August 2002, Québec City, Québec, Canada, vol. 3, pp. 33-36.
  • 9
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., and Girosi F. Networks for approximation and learning. Proc. IEEE 78 9 (1990) 1481-1497
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 10
    • 0036133934 scopus 로고    scopus 로고
    • Clustering based on conditional distributions in an auxiliary space
    • Sinkkonen J., and Kaski S. Clustering based on conditional distributions in an auxiliary space. Neural Computation 14 1 (2002) 217-239
    • (2002) Neural Computation , vol.14 , Issue.1 , pp. 217-239
    • Sinkkonen, J.1    Kaski, S.2
  • 11
    • 33646105563 scopus 로고    scopus 로고
    • S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in: Proceedings of the 19th International Conference on Machine Learning, Sydney, Australia, 8-12 July 2002, pp. 19-26.
  • 12
    • 84880784532 scopus 로고    scopus 로고
    • Z. Zhang, J.T. Kwok, D.Y. Yeung, Parametric distance metric learning with label information, in: Proceedings of the 18th International Joint Conference on Artificial Intelligence, 9-15 August 2003, Acapulco, Mexico, pp. 1450-1452.
  • 16
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Becker S., Thrun S., and Obermayer K. (Eds), MIT Press, Cambridge, MA, USA
    • Xing E.P., Ng A.Y., Jordan M.I., and Russell S. Distance metric learning, with application to clustering with side-information. In: Becker S., Thrun S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems 15 (2003), MIT Press, Cambridge, MA, USA 505-512
    • (2003) Advances in Neural Information Processing Systems 15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 17
    • 1942517347 scopus 로고    scopus 로고
    • A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall, Learning distance functions using equivalence relations, in: Proceedings of the 20th International Conference on Machine Learning, 21-24 August 2003, Washington DC, USA, pp. 11-18.
  • 19
    • 1942516950 scopus 로고    scopus 로고
    • J.T. Kwok, I.W. Tsang, Learning with idealized kernels, in: Proceedings of the 20th International Conference on Machine Learning, 21-24 August 2003, Washington DC, USA, pp. 400-407.
  • 20
    • 0036643352 scopus 로고    scopus 로고
    • On deformable models for visual pattern recognition
    • Cheung K.W., Yeung D.Y., and Chin R.T. On deformable models for visual pattern recognition. Pattern Recognition 35 7 (2002) 1507-1526
    • (2002) Pattern Recognition , vol.35 , Issue.7 , pp. 1507-1526
    • Cheung, K.W.1    Yeung, D.Y.2    Chin, R.T.3
  • 21
    • 14344262274 scopus 로고    scopus 로고
    • H. Chang, D.Y. Yeung, Locally linear metric adaptation for semi-supervised clustering, in: Proceedings of the 21st International Conference on Machine Learning, 4-8 August 2004, Banff, Alberta, Canada, pp. 153-160.
  • 22
    • 0029305517 scopus 로고
    • Multidimensional scaling by iterative majorization using radial basis functions
    • Webb A.R. Multidimensional scaling by iterative majorization using radial basis functions. Pattern Recognition 28 5 (1995) 753-759
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 753-759
    • Webb, A.R.1
  • 23
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 5500 (2000) 2323-2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 24
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66 (1971) 846-850
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 26
    • 0042440883 scopus 로고    scopus 로고
    • T. Hertz, N. Shental, A. Bar-Hillel, D. Weinshall, Enhancing image and video retrieval: learning via equivalence constraints, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 18-20 June 2003, Madison, WI, USA, vol. 2, pp. 668-674.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.