-
1
-
-
1942517347
-
Learning distance functions using equivalence relations
-
Washington, DC, USA
-
Bar-Hillel, A., Hertz, T., Shental, N., &: Weinshall, D. (2003). Learning distance functions using equivalence relations. Proceedings of the Twentieth International Conference on Machine Learning (pp. 11-18). Washington, DC, USA.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning
, pp. 11-18
-
-
Bar-Hillel, A.1
Hertz, T.2
Shental, N.3
Weinshall, D.4
-
2
-
-
2542567719
-
Semisupervised clustering by seeding
-
Sydney, Australia
-
Basu, S., Banerjee, A., & Mooney, R. (2002). Semisupervised clustering by seeding. Proceedings of the Nineteenth International Conference on Machine Learning (pp. 19-26). Sydney, Australia.
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning
, pp. 19-26
-
-
Basu, S.1
Banerjee, A.2
Mooney, R.3
-
3
-
-
0036643352
-
On deformable models for visual pattern recognition
-
Cheung, K., Yeung, D., & Chin, R. (2002). On deformable models for visual pattern recognition. Pattern Recognition, 35, 1507-1526.
-
(2002)
Pattern Recognition
, vol.35
, pp. 1507-1526
-
-
Cheung, K.1
Yeung, D.2
Chin, R.3
-
4
-
-
0036709369
-
Locally adaptive metric nearest-neighbor classification
-
Domeniconi, C., Peng, J., & Gunopulos, D. (2002). Locally adaptive metric nearest-neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1281-1285.
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, pp. 1281-1285
-
-
Domeniconi, C.1
Peng, J.2
Gunopulos, D.3
-
5
-
-
0004067283
-
-
(Technical Report). Department of Statistics, Stanford University, Stanford, CA, USA
-
Friedman, J. (1994). Flexible metric nearest neighbor classification (Technical Report). Department of Statistics, Stanford University, Stanford, CA, USA.
-
(1994)
Flexible Metric Nearest Neighbor Classification
-
-
Friedman, J.1
-
8
-
-
9444294778
-
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
-
Sydney, Australia
-
Klein, D., Kamvar, S., & Manning, C. (2002). From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. Proceedings of the Nineteenth International Conference on Machine Learning (pp. 307-314). Sydney, Australia.
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.2
Manning, C.3
-
9
-
-
1942516950
-
Learning with idealized kernels
-
Washington, DC, USA
-
Kwok, J., & Tsang, I. (2003). Learning with idealized kernels. Proceedings of the Twentieth International Conference on Machine Learning (pp. 400-407). Washington, DC, USA.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning
, pp. 400-407
-
-
Kwok, J.1
Tsang, I.2
-
10
-
-
0001920729
-
Similarity metric learning for a variable-kernel classifier
-
Lowe, D. (1995). Similarity metric learning for a variable-kernel classifier. Neural Computation, 7, 72-85.
-
(1995)
Neural Computation
, vol.7
, pp. 72-85
-
-
Lowe, D.1
-
11
-
-
33751573445
-
Adaptive kernel metric nearest neighbor classification
-
Québec City, Québec, Canada
-
Peng, J., Heisterkamp, D., & Dai, H. (2002). Adaptive kernel metric nearest neighbor classification. Proceedings of the Sixteenth International Conference on Pattern Recognition (pp. 33-36). Québec City, Québec, Canada.
-
(2002)
Proceedings of the Sixteenth International Conference on Pattern Recognition
, pp. 33-36
-
-
Peng, J.1
Heisterkamp, D.2
Dai, H.3
-
12
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T., &: Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
13
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand, W. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
-
(1971)
Journal of the American Statistical Association
, vol.66
, pp. 846-850
-
-
Rand, W.1
-
14
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
15
-
-
84898968165
-
Computing Gaussian mixture models with EM using equivalence constraints
-
Cambridge, MA, USA: MIT Press. To appear
-
Shental, N., Bar-Hillel, A., Hertz, T., & Weinshall, D. (2004). Computing Gaussian mixture models with EM using equivalence constraints. In Advances in neural information processing systems 16. Cambridge, MA, USA: MIT Press. To appear.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Shental, N.1
Bar-Hillel, A.2
Hertz, T.3
Weinshall, D.4
-
16
-
-
0036133934
-
Clustering based on conditional distributions in an auxiliary space
-
Sinkkonen, J., & Kaski, S. (2002). Clustering based on conditional distributions in an auxiliary space. Neural Computation, 14, 217-239.
-
(2002)
Neural Computation
, vol.14
, pp. 217-239
-
-
Sinkkonen, J.1
Kaski, S.2
-
17
-
-
0001898293
-
Clustering with instance-level constraints
-
Stanford, CA, USA
-
Wagstaff, K., & Cardie, C. (2000). Clustering with instance-level constraints. Proceedings of the Seventeenth International Conference on Machine Learning (pp. 1103-1110). Stanford, CA, USA.
-
(2000)
Proceedings of the Seventeenth International Conference on Machine Learning
, pp. 1103-1110
-
-
Wagstaff, K.1
Cardie, C.2
-
18
-
-
0042377235
-
Constrained k-means clustering with background knowledge
-
Williamstown, MA, USA
-
Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001). Constrained k-means clustering with background knowledge. Proceedings of the Eighteenth International Conference on Machine Learning (pp. 577-584). Williamstown, MA, USA.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
-
19
-
-
0029305517
-
Multidimensional scaling by iterative majorization using radial basis functions
-
Webb, A. (1995). Multidimensional scaling by iterative majorization using radial basis functions. Pattern Recognition, 28, 753-759.
-
(1995)
Pattern Recognition
, vol.28
, pp. 753-759
-
-
Webb, A.1
-
20
-
-
84879571292
-
Distance metric learning, with application to clustering with side-information
-
S. Becker, S. Thrun and K. Obermayer (Ms.), Cambridge, MA, USA: MIT Press
-
Xing, E., Ng, A., Jordan, M., & Russell, S. (2003). Distance metric learning, with application to clustering with side-information. In S. Becker, S. Thrun and K. Obermayer (Ms.), Advances in neural information processing systems 15, 505-512. Cambridge, MA, USA: MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 505-512
-
-
Xing, E.1
Ng, A.2
Jordan, M.3
Russell, S.4
-
21
-
-
84880784532
-
Parametric distance metric learning with label information
-
Acapulco, Mexico
-
Zhang, Z., Kwok, J., & Yeung, D. (2003). Parametric distance metric learning with label information. Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (pp. 1450-1452). Acapulco, Mexico.
-
(2003)
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
, pp. 1450-1452
-
-
Zhang, Z.1
Kwok, J.2
Yeung, D.3
|