메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 815-822

A dependence maximization view of clustering

Author keywords

[No Author keywords available]

Indexed keywords

OPTIMIZATION; PERTURBATION TECHNIQUES; STATISTICAL METHODS;

EID: 34547972314     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273599     Document Type: Conference Paper
Times cited : (98)

References (25)
  • 1
    • 12244256379 scopus 로고    scopus 로고
    • Kernel kmeans, spectral clustering and normalized cuts
    • Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel kmeans, spectral clustering and normalized cuts. KDD.
    • (2004) KDD
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 2
    • 14344257496 scopus 로고    scopus 로고
    • K-means clustering via principal component analysis
    • Ding, C., &: He, X. (2004). K-means clustering via principal component analysis. ICML.
    • (2004) ICML
    • Ding, C.1    He, X.2
  • 3
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine, S., & Scheinberg, K. (2001). Efficient SVM training using low-rank kernel representations. JMLR, 2, 243-264.
    • (2001) JMLR , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 4
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
    • Fukumizu, K., Bach, F. R., & Jordan, M. I. (2004). Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. JMLR, 5, 73-99.
    • (2004) JMLR , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 5
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel based clustering in feature space
    • Girolami, M. (2001). Mercer kernel based clustering in feature space. IEEE TNN, 4(13), 780-784.
    • (2001) IEEE TNN , vol.4 , Issue.13 , pp. 780-784
    • Girolami, M.1
  • 6
    • 34547973190 scopus 로고    scopus 로고
    • Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In ALT.
    • Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In ALT.
  • 7
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: Good, bad and spectral
    • Kannan, R., Vempala, S., & Vetta, A. (2004). On clusterings: good, bad and spectral. J. of ACM, 51, 497-515.
    • (2004) J. of ACM , vol.51 , pp. 497-515
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 9
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • L. M. LeCam, & J. Neyman, eds, U. California Press
    • MacQueen, J. (1967). Some methods of classification and analysis of multivariate observations. In L. M. LeCam, & J. Neyman, eds., Proc. 5th Berkeley Symposium on Math., Stat., and Prob., 281. U. California Press.
    • (1967) Proc. 5th Berkeley Symposium on Math., Stat., and Prob , vol.281
    • MacQueen, J.1
  • 10
    • 78650177454 scopus 로고    scopus 로고
    • Data centering in feature space
    • Meilǎ, M. (2003). Data centering in feature space. AIS-TATS.
    • (2003) AIS-TATS
    • Meilǎ, M.1
  • 11
    • 34547984065 scopus 로고    scopus 로고
    • The local equivalence of two distances between clustering: The misclassification error metric and the chi-squared distance
    • Meilǎ, M. (2005). The local equivalence of two distances between clustering: the misclassification error metric and the chi-squared distance. ICML.
    • (2005) ICML
    • Meilǎ, M.1
  • 12
    • 33749236636 scopus 로고    scopus 로고
    • The uniqueness of a good optimal for k-means
    • Meilǎ, M. (2006). The uniqueness of a good optimal for k-means. ICML.
    • (2006) ICML
    • Meilǎ, M.1
  • 13
  • 14
    • 84899013108 scopus 로고    scopus 로고
    • Spectral clustering: Analysis and an algorithm
    • Ng, A., Jordan, M., & Weiss, Y. (2002). Spectral clustering: Analysis and an algorithm. In NIPS.
    • (2002) NIPS
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 15
    • 0034498178 scopus 로고    scopus 로고
    • Automatic analysis of facial expressions: The state of the art
    • Pantic, M., &: Rothkrantz, L. (2000). Automatic analysis of facial expressions: The state of the art. PAMI, 22(12), 1424-1445.
    • (2000) PAMI , vol.22 , Issue.12 , pp. 1424-1445
    • Pantic, M.1    Rothkrantz, L.2
  • 17
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A. J., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10, 1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 18
    • 0030646927 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Shi, J., & Malik, J. (1997). Normalized cuts and image segmentation. CVPR.
    • (1997) CVPR
    • Shi, J.1    Malik, J.2
  • 20
    • 14344259597 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • Smola, A. J., & Kondor, I. R. (2003). Kernels and regularization on graphs. In COLT.
    • (2003) COLT
    • Smola, A.J.1    Kondor, I.R.2
  • 22
    • 34547991668 scopus 로고    scopus 로고
    • An introduction to nonlinear dimensionality reduction by maximum variance unfolding
    • Weinberger, K. Q., & Saul, L. K. (2006). An introduction to nonlinear dimensionality reduction by maximum variance unfolding. AAAI.
    • (2006) AAAI
    • Weinberger, K.Q.1    Saul, L.K.2
  • 23
    • 33749254086 scopus 로고    scopus 로고
    • A duality view of spectral methods for dimensionality reduction
    • Xiao, L., Sun, J., & Boyd, S. (2006). A duality view of spectral methods for dimensionality reduction. ICML.
    • (2006) ICML
    • Xiao, L.1    Sun, J.2    Boyd, S.3
  • 24
    • 33745936031 scopus 로고    scopus 로고
    • A unifying approach to hard and probablistic clustering
    • Zass, R., & Shashua, A. (2005). A unifying approach to hard and probablistic clustering. ICCV.
    • (2005) ICCV
    • Zass, R.1    Shashua, A.2
  • 25
    • 0013246766 scopus 로고    scopus 로고
    • Spectral relaxation for k-means clustering
    • Zha, H., Ding, C., Gu, M., He, X., & Simon, H. (2001). Spectral relaxation for k-means clustering. In NIPS.
    • (2001) NIPS
    • Zha, H.1    Ding, C.2    Gu, M.3    He, X.4    Simon, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.