-
1
-
-
0025010979
-
The GTPase superfamily: A conserved switch for diverse cell functions
-
Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990; 348:125-32.
-
(1990)
Nature
, vol.348
, pp. 125-132
-
-
Bourne, H.R.1
Sanders, D.A.2
McCormick, F.3
-
2
-
-
0026026818
-
The GTPase superfamily: Conserved structure and molecular mechanism
-
Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991; 349:117-27.
-
(1991)
Nature
, vol.349
, pp. 117-127
-
-
Bourne, H.R.1
Sanders, D.A.2
McCormick, F.3
-
3
-
-
0030920782
-
G protein mechanisms: Insights from structural analysis
-
Sprang SR. G protein mechanisms: insights from structural analysis. Annu Rev Biochem 1997; 66:639-78.
-
(1997)
Annu Rev Biochem
, vol.66
, pp. 639-678
-
-
Sprang, S.R.1
-
4
-
-
0022891350
-
A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins
-
Ahnn J, March P, Takiff H, Inouye M. A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. Proc Natl Acad Sci USA 1986; 83:8849-53.
-
(1986)
Proc Natl Acad Sci USA
, vol.83
, pp. 8849-8853
-
-
Ahnn, J.1
March, P.2
Takiff, H.3
Inouye, M.4
-
5
-
-
0034909325
-
Evolution of a molecular switch: Universal bacterial GTPases regulate ribosome function
-
Caldon CE, Yoong P, March PE. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 2001; 41:289-97.
-
(2001)
Mol Microbiol
, vol.41
, pp. 289-297
-
-
Caldon, C.E.1
Yoong, P.2
March, P.E.3
-
6
-
-
0029654105
-
GTPases: A family of molecular switches and clocks
-
Bourne HR. GTPases: a family of molecular switches and clocks. Philos Trans R Soc Lond B Biol Sci 1995; 349:283-9.
-
(1995)
Philos Trans R Soc Lond B Biol Sci
, vol.349
, pp. 283-289
-
-
Bourne, H.R.1
-
7
-
-
0033933081
-
Regulation of GTPases in the bacterial translation machinery
-
Sprinzl M, Brock S, Huang Y, Milovnik P, Nanninga M, Nesper-Brock M, et al. Regulation of GTPases in the bacterial translation machinery. Biol Chem 2000; 381:367-75.
-
(2000)
Biol Chem
, vol.381
, pp. 367-375
-
-
Sprinzl, M.1
Brock, S.2
Huang, Y.3
Milovnik, P.4
Nanninga, M.5
Nesper-Brock, M.6
-
8
-
-
0030772378
-
The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants
-
Scheffzek K, Ahmadian M, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 1997; 277:333-8.
-
(1997)
Science
, vol.277
, pp. 333-338
-
-
Scheffzek, K.1
Ahmadian, M.2
Kabsch, W.3
Wiesmüller, L.4
Lautwein, A.5
Schmitz, F.6
-
9
-
-
0031283407
-
G proteins, effectors and GAPs: Structure and mechanism
-
Sprang S. G proteins, effectors and GAPs: structure and mechanism. Curr Opin Struct Biol 1997; 7:849-56.
-
(1997)
Curr Opin Struct Biol
, vol.7
, pp. 849-856
-
-
Sprang, S.1
-
10
-
-
77951297777
-
Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation
-
Clementi N, Chirkova A, Puffer B, Micura R, Polacek N. Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nat Chem Biol 2010; 6:344-51.
-
(2010)
Nat Chem Biol
, vol.6
, pp. 344-351
-
-
Clementi, N.1
Chirkova, A.2
Puffer, B.3
Micura, R.4
Polacek, N.5
-
11
-
-
0034067634
-
Era GTPase of Escherichia coli: Binding to 16S rRNA and modulation of GTPase activity by RNA and carbohydrates
-
Meier T, Peery R, McAllister K, Zhao G. Era GTPase of Escherichia coli: binding to 16S rRNA and modulation of GTPase activity by RNA and carbohydrates. Microbiology 2000; 146:1071-83.
-
(2000)
Microbiology
, vol.146
, pp. 1071-1083
-
-
Meier, T.1
Peery, R.2
McAllister, K.3
Zhao, G.4
-
12
-
-
70349301461
-
Structure of ERA in complex with the 3' end of 16S rRNA: Implications for ribosome biogenesis
-
Tu C, Zhou X, Tropea J, Austin B, Waugh D, Court D, et al. Structure of ERA in complex with the 3' end of 16S rRNA: implications for ribosome biogenesis. Proc Natl Acad Sci USA 2009; 106:14843-8.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 14843-14848
-
-
Tu, C.1
Zhou, X.2
Tropea, J.3
Austin, B.4
Waugh, D.5
Court, D.6
-
13
-
-
0035909810
-
Role of SRP RNA in the GTPase cycles of Ffh and FtsY
-
Peluso P, Shan S, Nock S, Herschlag D, Walter P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 2001; 40:15224-33.
-
(2001)
Biochemistry
, vol.40
, pp. 15224-15233
-
-
Peluso, P.1
Shan, S.2
Nock, S.3
Herschlag, D.4
Walter, P.5
-
14
-
-
33846456974
-
SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting
-
Siu FY, Spanggord RJ, Doudna JA. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting. RNA 2007; 13:240-50.
-
(2007)
RNA
, vol.13
, pp. 240-250
-
-
Siu, F.Y.1
Spanggord, R.J.2
Doudna, J.A.3
-
15
-
-
58149264965
-
Signal sequences activate the catalytic switch of SRP RNA
-
Bradshaw N, Neher S, Booth D, Walter P. Signal sequences activate the catalytic switch of SRP RNA. Science 2009; 323:127-30.
-
(2009)
Science
, vol.323
, pp. 127-130
-
-
Bradshaw, N.1
Neher, S.2
Booth, D.3
Walter, P.4
-
16
-
-
0038352105
-
Function of the universally conserved bacterial GTPases
-
Caldon CE, March PE. Function of the universally conserved bacterial GTPases. Curr Opin Microbiol 2003; 6:135-9.
-
(2003)
Curr Opin Microbiol
, vol.6
, pp. 135-139
-
-
Caldon, C.E.1
March, P.E.2
-
17
-
-
33846887420
-
Phylogenetic distribution of translational GTPases in bacteria
-
Margus T, Remm M, Tenson T. Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 2007; 8:15.
-
(2007)
BMC Genomics
, vol.8
, pp. 15
-
-
Margus, T.1
Remm, M.2
Tenson, T.3
-
18
-
-
70349557671
-
Role of GTPases in bacterial ribosome assembly
-
Britton R. Role of GTPases in bacterial ribosome assembly. Annu Rev Microbiol 2009; 63:155-76.
-
(2009)
Annu Rev Microbiol
, vol.63
, pp. 155-176
-
-
Britton, R.1
-
19
-
-
0033554653
-
Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit
-
Sayed A, Matsuyama S, Inouye M. Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. Biochem Biophys Res Commun 1999; 264:51-4.
-
(1999)
Biochem Biophys Res Commun
, vol.264
, pp. 51-54
-
-
Sayed, A.1
Matsuyama, S.2
Inouye, M.3
-
20
-
-
0038016743
-
Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli
-
Inoue K, Alsina J, Chen J, Inouye M. Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol Microbiol 2003; 48:1005-16.
-
(2003)
Mol Microbiol
, vol.48
, pp. 1005-1016
-
-
Inoue, K.1
Alsina, J.2
Chen, J.3
Inouye, M.4
-
21
-
-
20844460290
-
Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly
-
Sharma M, Barat C, Wilson D, Booth T, Kawazoe M, Hori-Takemoto C, et al. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol Cell 2005; 18:319-29.
-
(2005)
Mol Cell
, vol.18
, pp. 319-329
-
-
Sharma, M.1
Barat, C.2
Wilson, D.3
Booth, T.4
Kawazoe, M.5
Hori-Takemoto, C.6
-
22
-
-
0033587699
-
Crystal structure of ERA: A GTPase-dependent cell cycle regulator containing an RNA binding motif
-
Chen X, Court D, Ji X. Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci USA 1999; 96:8396-401.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 8396-8401
-
-
Chen, X.1
Court, D.2
Ji, X.3
-
23
-
-
0019964240
-
Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum
-
Walter P, Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 1982; 299:691-8.
-
(1982)
Nature
, vol.299
, pp. 691-698
-
-
Walter, P.1
Blobel, G.2
-
24
-
-
3943099373
-
Structural insights into the signal recognition particle
-
Doudna J, Batey R. Structural insights into the signal recognition particle. Annu Rev Biochem 2004; 73:539-57.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 539-557
-
-
Doudna, J.1
Batey, R.2
-
25
-
-
70349595267
-
Protein targeting by the signal recognition particle
-
Grudnik P, Bange G, Sinning I. Protein targeting by the signal recognition particle. Biol Chem 2009; 390:775-82.
-
(2009)
Biol Chem
, vol.390
, pp. 775-782
-
-
Grudnik, P.1
Bange, G.2
Sinning, I.3
-
26
-
-
67651230544
-
Signal recognition particle (SRP) and SRP receptor: A new paradigm for multistate regulatory GTPases
-
Shan S, Schmid S, Zhang X. Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases. Biochemistry 2009; 48:6696-7604.
-
(2009)
Biochemistry
, vol.48
, pp. 6696-7604
-
-
Shan, S.1
Schmid, S.2
Zhang, X.3
-
27
-
-
0026326816
-
Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor
-
Connolly T, Rapiejko P, Gilmore R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 1991; 252:1171-3.
-
(1991)
Science
, vol.252
, pp. 1171-1173
-
-
Connolly, T.1
Rapiejko, P.2
Gilmore, R.3
-
28
-
-
0347584006
-
Substrate twinning activates the signal recognition particle and its receptor
-
Egea P, Shan S, Napetschnig J, Savage D, Walter P, Stroud R. Substrate twinning activates the signal recognition particle and its receptor. Nature 2004; 427:215-21.
-
(2004)
Nature
, vol.427
, pp. 215-221
-
-
Egea, P.1
Shan, S.2
Napetschnig, J.3
Savage, D.4
Walter, P.5
Stroud, R.6
-
30
-
-
0032480759
-
Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli
-
Jagath J, Rodnina M, Lentzen G, Wintermeyer W. Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. Biochemistry 1998; 37:15408-13.
-
(1998)
Biochemistry
, vol.37
, pp. 15408-15413
-
-
Jagath, J.1
Rodnina, M.2
Lentzen, G.3
Wintermeyer, W.4
-
31
-
-
0034723143
-
Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP
-
Jagath J, Rodnina M, Wintermeyer W. Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J Mol Biol 2000; 295:745-53.
-
(2000)
J Mol Biol
, vol.295
, pp. 745-753
-
-
Jagath, J.1
Rodnina, M.2
Wintermeyer, W.3
-
32
-
-
0029097359
-
Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases
-
Powers T, Walter P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 1995; 269:1422-4.
-
(1995)
Science
, vol.269
, pp. 1422-1424
-
-
Powers, T.1
Walter, P.2
-
33
-
-
0034596007
-
Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor
-
Peluso P, Herschlag D, Nock S, Freymann D, Johnson A, Walter P. Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 2000; 288:1640-3.
-
(2000)
Science
, vol.288
, pp. 1640-1643
-
-
Peluso, P.1
Herschlag, D.2
Nock, S.3
Freymann, D.4
Johnson, A.5
Walter, P.6
-
34
-
-
0035256512
-
Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY
-
Jagath J, Matassova N, de Leeuw E, Warnecke J, Lentzen G, Rodnina M, et al. Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. RNA 2001; 7:293-301.
-
(2001)
RNA
, vol.7
, pp. 293-301
-
-
Jagath, J.1
Matassova, N.2
De Leeuw, E.3
Warnecke, J.4
Lentzen, G.5
Rodnina, M.6
-
35
-
-
34547929138
-
Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation
-
Shan S, Chandrasekar S, Walter P. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. J Cell Biol 2007; 178:611-20.
-
(2007)
J Cell Biol
, vol.178
, pp. 611-620
-
-
Shan, S.1
Chandrasekar, S.2
Walter, P.3
-
36
-
-
28544445590
-
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle
-
Spanggord R, Siu F, Ke A, Doudna J. RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle. Nat Struct Mol Biol 2005; 12:1116-22.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 1116-1122
-
-
Spanggord, R.1
Siu, F.2
Ke, A.3
Doudna, J.4
-
37
-
-
77949407904
-
Chemically engineered ribosomes: A new frontier in synthetic biology
-
Chirkova A, Erlacher MD, Micura R, Polacek N. Chemically engineered ribosomes: a new frontier in synthetic biology. Curr Org Chem 2010; 14:148-61.
-
(2010)
Curr Org Chem
, vol.14
, pp. 148-161
-
-
Chirkova, A.1
Erlacher, M.D.2
Micura, R.3
Polacek, N.4
-
38
-
-
0033168212
-
Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome
-
Pape T, Wintermeyer W, Rodnina M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J 1999; 18:3800-7.
-
(1999)
EMBO J
, vol.18
, pp. 3800-3807
-
-
Pape, T.1
Wintermeyer, W.2
Rodnina, M.3
-
39
-
-
0034700993
-
Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome
-
Piepenburg O, Pape T, Pleiss JA, Wintermeyer W, Uhlenbeck OC, Rodnina MV. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 2000; 39:1734-8.
-
(2000)
Biochemistry
, vol.39
, pp. 1734-1738
-
-
Piepenburg, O.1
Pape, T.2
Pleiss, J.A.3
Wintermeyer, W.4
Uhlenbeck, O.C.5
Rodnina, M.V.6
-
40
-
-
4744365694
-
tRNA selection and kinetic proofreading in translation
-
Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD. tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 2004; 11:1008-14.
-
(2004)
Nat Struct Mol Biol
, vol.11
, pp. 1008-1014
-
-
Blanchard, S.C.1
Gonzalez, R.L.2
Kim, H.D.3
Chu, S.4
Puglisi, J.D.5
-
41
-
-
0034691576
-
A ratchet-like inter-subunit reorganization of the ribosome during translocation
-
Frank J, Agrawal RK. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 2000; 406:318-22.
-
(2000)
Nature
, vol.406
, pp. 318-322
-
-
Frank, J.1
Agrawal, R.K.2
-
42
-
-
0031028688
-
Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome
-
Rodnina MV, Savelsbergh A, Katunin VI, Wintermeyer W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 1997; 385:37-41.
-
(1997)
Nature
, vol.385
, pp. 37-41
-
-
Rodnina, M.V.1
Savelsbergh, A.2
Katunin, V.I.3
Wintermeyer, W.4
-
43
-
-
34247560812
-
Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation
-
Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 2007; 26:2421-31.
-
(2007)
EMBO J
, vol.26
, pp. 2421-2431
-
-
Taylor, D.J.1
Nilsson, J.2
Merrill, A.R.3
Andersen, G.R.4
Nissen, P.5
Frank, J.6
-
44
-
-
57349132462
-
The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form
-
Hauryliuk V, Mitkevich VA, Eliseeva NA, Petrushanko IY, Ehrenberg M, Makarov AA. The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form. Proc Natl Acad Sci USA 2008; 105:15678-83.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15678-15683
-
-
Hauryliuk, V.1
Mitkevich, V.A.2
Eliseeva, N.A.3
Petrushanko, I.Y.4
Ehrenberg, M.5
Makarov, A.A.6
-
45
-
-
38049178477
-
The process of mRNA-tRNA translocation
-
Frank J, Gao H, Sengupta J, Gao N, Taylor DJ. The process of mRNA-tRNA translocation. Proc Natl Acad Sci USA 2007; 104:19671-8.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19671-19678
-
-
Frank, J.1
Gao, H.2
Sengupta, J.3
Gao, N.4
Taylor, D.J.5
-
46
-
-
0028059544
-
Three-dimensional structure of the ribosomal translocase: Elongation factor G from Thermus thermophilus
-
Aevarsson A, Brazhnikov E, Garber M, Zheltonosova J, Chirgadze Y, al Karadaghi S, et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J 1994; 13:3669-77.
-
(1994)
EMBO J
, vol.13
, pp. 3669-3677
-
-
Aevarsson, A.1
Brazhnikov, E.2
Garber, M.3
Zheltonosova, J.4
Chirgadze, Y.5
Al Karadaghi, S.6
-
47
-
-
33750799914
-
The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome
-
Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN, et al. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 2006; 127:721-33.
-
(2006)
Cell
, vol.127
, pp. 721-733
-
-
Qin, Y.1
Polacek, N.2
Vesper, O.3
Staub, E.4
Einfeldt, E.5
Wilson, D.N.6
-
48
-
-
20444393817
-
Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs
-
Zavialov AV, Hauryliuk VV, Ehrenberg M. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs. J Biol 2005; 4:9.
-
(2005)
J Biol
, vol.4
, pp. 9
-
-
Zavialov, A.V.1
Hauryliuk, V.V.2
Ehrenberg, M.3
-
49
-
-
33748785471
-
Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome
-
Wilden B, Savelsbergh A, Rodnina MV, Wintermeyer W. Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome. Proc Natl Acad Sci USA 2006; 103:13670-5.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 13670-13675
-
-
Wilden, B.1
Savelsbergh, A.2
Rodnina, M.V.3
Wintermeyer, W.4
-
50
-
-
33847358277
-
Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors
-
Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, Terada T, et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell 2007; 25:751-64.
-
(2007)
Mol Cell
, vol.25
, pp. 751-764
-
-
Connell, S.R.1
Takemoto, C.2
Wilson, D.N.3
Wang, H.4
Murayama, K.5
Terada, T.6
-
51
-
-
0023722010
-
Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA
-
Moazed D, Robertson JM, Noller HF. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 1988; 334:362-4.
-
(1988)
Nature
, vol.334
, pp. 362-364
-
-
Moazed, D.1
Robertson, J.M.2
Noller, H.F.3
-
52
-
-
0033966203
-
Stimulation of the GTPase activity of translation elongation factor G by ribosomal protein L7/12
-
Savelsbergh A, Mohr D, Wilden B, Wintermeyer W, Rodnina MV. Stimulation of the GTPase activity of translation elongation factor G by ribosomal protein L7/12. J Biol Chem 2000; 275:890-4.
-
(2000)
J Biol Chem
, vol.275
, pp. 890-894
-
-
Savelsbergh, A.1
Mohr, D.2
Wilden, B.3
Wintermeyer, W.4
Rodnina, M.V.5
-
53
-
-
0037108102
-
GTPase activation of elongation factors Tu and G on the ribosome
-
Mohr D, Wintermeyer W, Rodnina MV. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 2002; 41:12520-8.
-
(2002)
Biochemistry
, vol.41
, pp. 12520-12528
-
-
Mohr, D.1
Wintermeyer, W.2
Rodnina, M.V.3
-
54
-
-
21244465843
-
Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation
-
Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM, Tonevitsky AG, et al. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 2005; 121:991-1004.
-
(2005)
Cell
, vol.121
, pp. 991-1004
-
-
Diaconu, M.1
Kothe, U.2
Schlunzen, F.3
Fischer, N.4
Harms, J.M.5
Tonevitsky, A.G.6
-
55
-
-
0023664263
-
The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins
-
Endo Y, Mitsui K, Motizuki M, Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 1987; 262:5908-12.
-
(1987)
J Biol Chem
, vol.262
, pp. 5908-5912
-
-
Endo, Y.1
Mitsui, K.2
Motizuki, M.3
Tsurugi, K.4
-
56
-
-
0020479406
-
The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid
-
Endo Y, Wool IG. The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem 1982; 257:9054-60.
-
(1982)
J Biol Chem
, vol.257
, pp. 9054-9060
-
-
Endo, Y.1
Wool, I.G.2
-
57
-
-
0023405923
-
Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors
-
Hausner TP, Atmadja J, Nierhaus KH. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 1987; 69:911-23.
-
(1987)
Biochimie
, vol.69
, pp. 911-923
-
-
Hausner, T.P.1
Atmadja, J.2
Nierhaus, K.H.3
-
58
-
-
58049198302
-
Recognition of aminoacyl-tRNA: A common molecular mechanism revealed by cryo-EM
-
Li W, Agirrezabala X, Lei J, Bouakaz L, Brunelle JL, Ortiz-Meoz RF, et al. Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM. EMBO J 2008; 27:3322-31.
-
(2008)
EMBO J
, vol.27
, pp. 3322-3331
-
-
Li, W.1
Agirrezabala, X.2
Lei, J.3
Bouakaz, L.4
Brunelle, J.L.5
Ortiz-Meoz, R.F.6
-
59
-
-
70350602056
-
The structure of the ribosome with elongation factor G trapped in the posttranslocational state
-
Gao Y, Selmer M, Dunham C, Weixlbaumer A, Kelley A, Ramakrishnan V. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 2009; 326:694-9.
-
(2009)
Science
, vol.326
, pp. 694-699
-
-
Gao, Y.1
Selmer, M.2
Dunham, C.3
Weixlbaumer, A.4
Kelley, A.5
Ramakrishnan, V.6
-
60
-
-
70350588648
-
The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA
-
Schmeing T, Voorhees R, Kelley A, Gao Y, Murphy Ft, Weir J, et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 2009; 326:688-94.
-
(2009)
Science
, vol.326
, pp. 688-694
-
-
Schmeing, T.1
Voorhees, R.2
Kelley, A.3
Gao, Y.4
Murphy, Ft.5
Weir, J.6
-
61
-
-
0038152834
-
Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation
-
Leonov AA, Sergiev PV, Bogdanov AA, Brimacombe R, Dontsova OA. Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation. J Biol Chem 2003; 278:25664-670.
-
(2003)
J Biol Chem
, vol.278
, pp. 25664-25670
-
-
Leonov, A.A.1
Sergiev, P.V.2
Bogdanov, A.A.3
Brimacombe, R.4
Dontsova, O.A.5
-
62
-
-
0033578321
-
Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome
-
Rodnina MV, Savelsbergh A, Matassova NB, Katunin VI, Semenkov YP, Wintermeyer W. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc Natl Acad Sci USA 1999; 96:9586-90.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 9586-9590
-
-
Rodnina, M.V.1
Savelsbergh, A.2
Matassova, N.B.3
Katunin, V.I.4
Semenkov, Y.P.5
Wintermeyer, W.6
-
63
-
-
52949138707
-
The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit
-
Lancaster L, Lambert NJ, Maklan EJ, Horan LH, Noller HF. The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. RNA 2008; 14:1999-2012.
-
(2008)
RNA
, vol.14
, pp. 1999-2012
-
-
Lancaster, L.1
Lambert, N.J.2
Maklan, E.J.3
Horan, L.H.4
Noller, H.F.5
-
64
-
-
1442299243
-
The location and the significance of a cross-link between the sarcin/ricin domain of ribosomal RNA and the elongation factor- G
-
Chan YL, Correll CC, Wool IG. The location and the significance of a cross-link between the sarcin/ricin domain of ribosomal RNA and the elongation factor- G. J Mol Biol 2004; 337:263-72.
-
(2004)
J Mol Biol
, vol.337
, pp. 263-272
-
-
Chan, Y.L.1
Correll, C.C.2
Wool, I.G.3
-
65
-
-
29444436631
-
A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions
-
Chan YL, Dresios J, Wool IG. A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions. J Mol Biol 2006; 355:1014-25.
-
(2006)
J Mol Biol
, vol.355
, pp. 1014-1025
-
-
Chan, Y.L.1
Dresios, J.2
Wool, I.G.3
-
66
-
-
0033593240
-
The phenotype of mutations of G2655 in the sarcin/ricin domain of 23 S ribosomal RNA
-
Macbeth MR, Wool IG. The phenotype of mutations of G2655 in the sarcin/ricin domain of 23 S ribosomal RNA. J Mol Biol 1999; 285:965-75.
-
(1999)
J Mol Biol
, vol.285
, pp. 965-975
-
-
Macbeth, M.R.1
Wool, I.G.2
-
67
-
-
0028173136
-
Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA
-
Marchant A, Hartley MR. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA. Eur J Biochem 1994; 226:141-7.
-
(1994)
Eur J Biochem
, vol.226
, pp. 141-147
-
-
Marchant, A.1
Hartley, M.R.2
-
68
-
-
0030774277
-
The ribosome-in-pieces: Binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA
-
Munishkin A, Wool IG. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Proc Natl Acad Sci USA 1997; 94:12280-4.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 12280-12284
-
-
Munishkin, A.1
Wool, I.G.2
-
69
-
-
0025370161
-
A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome
-
Tapprich WE, Dahlberg AE. A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. EMBO J 1990; 9:2649-55.
-
(1990)
EMBO J
, vol.9
, pp. 2649-2655
-
-
Tapprich, W.E.1
Dahlberg, A.E.2
-
70
-
-
15044352268
-
Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451
-
Erlacher MD, Lang K, Shankaran N, Wotzel B, Huttenhofer A, Micura R, et al. Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451. Nucleic Acids Res 2005; 33:1618-27.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 1618-1627
-
-
Erlacher, M.D.1
Lang, K.2
Shankaran, N.3
Wotzel, B.4
Huttenhofer, A.5
Micura, R.6
-
71
-
-
33645462490
-
Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2′-OH at A2451 of 23S rRNA
-
Erlacher MD, Lang K, Wotzel B, Rieder R, Micura R, Polacek N. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2′-OH at A2451 of 23S rRNA. J Am Chem Soc 2006; 128:4453-9.
-
(2006)
J Am Chem Soc
, vol.128
, pp. 4453-4459
-
-
Erlacher, M.D.1
Lang, K.2
Wotzel, B.3
Rieder, R.4
Micura, R.5
Polacek, N.6
-
72
-
-
43149098292
-
The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis
-
Lang K, Erlacher M, Wilson DN, Micura R, Polacek N. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Chem Biol 2008; 15:485-92.
-
(2008)
Chem Biol
, vol.15
, pp. 485-492
-
-
Lang, K.1
Erlacher, M.2
Wilson, D.N.3
Micura, R.4
Polacek, N.5
-
73
-
-
42449129270
-
The structure of LepA, the ribosomal back translocase
-
Evans R, Blaha G, Bailey S, Steitz T. The structure of LepA, the ribosomal back translocase. Proc Natl Acad Sci USA 2008; 105:4673-8.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 4673-4678
-
-
Evans, R.1
Blaha, G.2
Bailey, S.3
Steitz, T.4
-
74
-
-
77649273875
-
Interrupted catalysis: The EF4 (LepA) effect on back-translocation
-
Liu H, Pan D, Pech M, Cooperman B. Interrupted catalysis: the EF4 (LepA) effect on back-translocation. J Mol Biol 2010; 396:1043-52.
-
(2010)
J Mol Biol
, vol.396
, pp. 1043-1052
-
-
Liu, H.1
Pan, D.2
Pech, M.3
Cooperman, B.4
-
75
-
-
0031854151
-
Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors
-
Brock S, Szkaradkiewicz K, Sprinzl M. Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol Microbiol 1998; 29:409-17.
-
(1998)
Mol Microbiol
, vol.29
, pp. 409-417
-
-
Brock, S.1
Szkaradkiewicz, K.2
Sprinzl, M.3
-
77
-
-
77950371305
-
The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex
-
Milon P, Carotti M, Konevega A, Wintermeyer W, Rodnina M, Gualerzi C. The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep 2010; 11:312-6.
-
(2010)
EMBO Rep
, vol.11
, pp. 312-316
-
-
Milon, P.1
Carotti, M.2
Konevega, A.3
Wintermeyer, W.4
Rodnina, M.5
Gualerzi, C.6
-
78
-
-
0015100568
-
Translocation of messenger RNA and "accommodation" of fMet-tRNA
-
Thach S, Thach R. Translocation of messenger RNA and " accommodation" of fMet-tRNA. Proc Natl Acad Sci USA 1971; 68:1791-5.
-
(1971)
Proc Natl Acad Sci USA
, vol.68
, pp. 1791-1795
-
-
Thach, S.1
Thach, R.2
-
79
-
-
0015226930
-
Role of GTP in the positioning of form-ylmethionyl- tRNAf on the E. coli ribosome
-
Kuechler E. Role of GTP in the positioning of form-ylmethionyl- tRNAf on the E. coli ribosome. Nat New Biol 1971; 234:216-8.
-
(1971)
Nat New Biol
, vol.234
, pp. 216-218
-
-
Kuechler, E.1
-
80
-
-
0029913289
-
Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site
-
La Teana A, Pon C, Gualerzi C. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J Mol Biol 1996; 256:667-75.
-
(1996)
J Mol Biol
, vol.256
, pp. 667-675
-
-
La Teana, A.1
Pon, C.2
Gualerzi, C.3
-
81
-
-
0342264747
-
Late events of translation initiation in bacteria: A kinetic analysis
-
Tomsic J, Vitali L, Daviter T, Savelsbergh A, Spurio R, Striebeck P, et al. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J 2000; 19:2127-36.
-
(2000)
EMBO J
, vol.19
, pp. 2127-2136
-
-
Tomsic, J.1
Vitali, L.2
Daviter, T.3
Savelsbergh, A.4
Spurio, R.5
Striebeck, P.6
-
82
-
-
0033525871
-
In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling
-
Luchin S, Putzer H, Hershey J, Cenatiempo Y, Grunberg-Manago M, Laalami S. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem 1999; 274:6074-9.
-
(1999)
J Biol Chem
, vol.274
, pp. 6074-6079
-
-
Luchin, S.1
Putzer, H.2
Hershey, J.3
Cenatiempo, Y.4
Grunberg-Manago, M.5
Laalami, S.6
-
83
-
-
0014938066
-
Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis
-
Lelong J, Grunberg-Manago M, Dondon J, Gros D, Gros F. Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis. Nature 1970; 226:505-10.
-
(1970)
Nature
, vol.226
, pp. 505-510
-
-
Lelong, J.1
Grunberg-Manago, M.2
Dondon, J.3
Gros, D.4
Gros, F.5
-
84
-
-
0034703718
-
X-Ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GTP binding
-
Roll-Mecak A, Cao C, Dever T, Burley S. X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 2000; 103:781-92.
-
(2000)
Cell
, vol.103
, pp. 781-792
-
-
Roll-Mecak, A.1
Cao, C.2
Dever, T.3
Burley, S.4
-
85
-
-
0021826803
-
Structurefunction relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides
-
Pon C, Paci M, Pawlik R, Gualerzi C. Structurefunction relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides. J Biol Chem 1985; 260:8918-24.
-
(1985)
J Biol Chem
, vol.260
, pp. 8918-8924
-
-
Pon, C.1
Paci, M.2
Pawlik, R.3
Gualerzi, C.4
-
86
-
-
0036301166
-
Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome
-
Cameron DM, Thompson J, March PE, Dahlberg AE. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J Mol Biol 2002; 319:27-35.
-
(2002)
J Mol Biol
, vol.319
, pp. 27-35
-
-
Cameron, D.M.1
Thompson, J.2
March, P.E.3
Dahlberg, A.E.4
-
87
-
-
0034903857
-
Initiation factor if 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA
-
La Teana A, Gualerzi C, Dahlberg A. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. RNA 2001; 7:1173-9.
-
(2001)
RNA
, vol.7
, pp. 1173-1179
-
-
La Teana, A.1
Gualerzi, C.2
Dahlberg, A.3
-
88
-
-
28544446738
-
Conformational transition of initiation factor 2 from the GTP- to GDPbound state visualized on the ribosome
-
Myasnikov A, Marzi S, Simonetti A, Giuliodori A, Gualerzi C, Yusupova G, et al. Conformational transition of initiation factor 2 from the GTP- to GDPbound state visualized on the ribosome. Nat Struct Mol Biol 2005; 12:1145-9.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 1145-1149
-
-
Myasnikov, A.1
Marzi, S.2
Simonetti, A.3
Giuliodori, A.4
Gualerzi, C.5
Yusupova, G.6
-
89
-
-
52149112910
-
Structure of the 30S translation initiation complex
-
Simonetti A, Marzi S, Myasnikov AG, Fabbretti A, Yusupov M, Gualerzi CO, et al. Structure of the 30S translation initiation complex. Nature 2008; 455:416-20.
-
(2008)
Nature
, vol.455
, pp. 416-420
-
-
Simonetti, A.1
Marzi, S.2
Myasnikov, A.G.3
Fabbretti, A.4
Yusupov, M.5
Gualerzi, C.O.6
-
90
-
-
77953082717
-
The Ribosomal Stalk Plays a Key Role in IF2-Mediated Association of the Ribosomal Subunits
-
doi:1016/j.jmb.2010.04.009
-
Huang C, Mandava C, Sanyal S. The Ribosomal Stalk Plays a Key Role in IF2-Mediated Association of the Ribosomal Subunits. J Mol Biol 2010; doi:1016/j.jmb.2010.04.009.
-
(2010)
J Mol Biol
-
-
Huang, C.1
Mandava, C.2
Sanyal, S.3
-
91
-
-
0025143632
-
What are antibiotics? Archaic functions for modern activities
-
Davies J. What are antibiotics? Archaic functions for modern activities. Mol Microbiol 1990; 4:1227-32.
-
(1990)
Mol Microbiol
, vol.4
, pp. 1227-1232
-
-
Davies, J.1
-
92
-
-
33749354360
-
Structure of the 70S ribosome complexed with mRNA and tRNA
-
Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 2006; 313:1935-42.
-
(2006)
Science
, vol.313
, pp. 1935-1942
-
-
Selmer, M.1
Dunham, C.M.2
Murphy, F.V.3
Weixlbaumer, A.4
Petry, S.5
Kelley, A.C.6
|