-
1
-
-
74849095946
-
Targeting translation in acute myeloid leukemia: A new paradigm for therapy?
-
Tamburini J, Green AS, Chapuis N, et al. Targeting translation in acute myeloid leukemia: a new paradigm for therapy? Cell Cycle. 2009;8(23): 3893-3899.
-
(2009)
Cell Cycle
, vol.8
, Issue.23
, pp. 3893-3899
-
-
Tamburini, J.1
Green, A.S.2
Chapuis, N.3
-
2
-
-
56749176442
-
LKB1: Linking cell structure and tumor suppression
-
Hezel AF, Bardeesy N. LKB1: linking cell structure and tumor suppression. Oncogene. 2008; 27(55):6908-6919.
-
(2008)
Oncogene
, vol.27
, Issue.55
, pp. 6908-6919
-
-
Hezel, A.F.1
Bardeesy, N.2
-
3
-
-
67749111502
-
The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8): 563-575.
-
(2009)
Nat Rev Cancer
, vol.9
, Issue.8
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
5
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy
-
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774-785.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, Issue.10
, pp. 774-785
-
-
Hardie, D.G.1
-
6
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
DOI 10.1172/JCI200113505
-
Zhou G, Myers R, Li Y, et al. Role of AMPactivated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167-1174. (Pubitemid 32995375)
-
(2001)
Journal of Clinical Investigation
, vol.108
, Issue.8
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
Wu, M.7
Ventre, J.8
Doebber, T.9
Fujii, N.10
Musi, N.11
Hirshman, M.F.12
Goodyear, L.J.13
Moller, D.E.14
-
7
-
-
34547114031
-
Systemic treatment with the antidiabetic drug, metformin, selectively impairs p53-deficient tumor cell growth
-
Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug, metformin, selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745-6752.
-
(2007)
Cancer Res
, vol.67
, Issue.14
, pp. 6745-6752
-
-
Buzzai, M.1
Jones, R.G.2
Amaravadi, R.K.3
-
8
-
-
33750068623
-
mTOR, translation initiation, and cancer
-
Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR, translation initiation, and cancer. Oncogene. 2006;25(48):6416-6422.
-
(2006)
Oncogene
, vol.25
, Issue.48
, pp. 6416-6422
-
-
Mamane, Y.1
Petroulakis, E.2
LeBacquer, O.3
Sonenberg, N.4
-
9
-
-
70349576526
-
Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia
-
Tamburini J, Green AS, Bardet V, et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood. 2009;114(8):1618-1627.
-
(2009)
Blood
, vol.114
, Issue.8
, pp. 1618-1627
-
-
Tamburini, J.1
Green, A.S.2
Bardet, V.3
-
10
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577-590.
-
(2003)
Cell
, vol.115
, Issue.5
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
11
-
-
36049043184
-
Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38
-
DOI 10.1126/science.1147379
-
Bai X, Ma D, Liu A, et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science. 2007;318(5852):977-980. (Pubitemid 350098994)
-
(2007)
Science
, vol.318
, Issue.5852
, pp. 977-980
-
-
Bai, X.1
Ma, D.2
Liu, A.3
Shen, X.4
Wang, Q.J.5
Liu, Y.6
Jiang, Y.7
-
12
-
-
67649823420
-
Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
-
Sato T, Nakashima A, Guo L, Tamanoi F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem. 2009;284(19):12783-12791.
-
(2009)
J Biol Chem
, vol.284
, Issue.19
, pp. 12783-12791
-
-
Sato, T.1
Nakashima, A.2
Guo, L.3
Tamanoi, F.4
-
13
-
-
57649165557
-
Reevaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling
-
Wang X, Fonseca BD, Tang H, et al. Reevaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem. 2008;283(45): 30482-30492.
-
(2008)
J Biol Chem
, vol.283
, Issue.45
, pp. 30482-30492
-
-
Wang, X.1
Fonseca, B.D.2
Tang, H.3
-
14
-
-
33747819801
-
mTOR and cancer: Insights into a complex relationship
-
Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9): 729-734.
-
(2006)
Nat Rev Cancer
, vol.6
, Issue.9
, pp. 729-734
-
-
Sabatini, D.M.1
-
15
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163-175.
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
-
16
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
DOI 10.1016/S0092-8674(02)00833-4
-
Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177-189. (Pubitemid 34876546)
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.-I.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
17
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
DOI 10.1038/ncb1183
-
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122-1128. (Pubitemid 39468014)
-
(2004)
Nature Cell Biology
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
Hall, A.6
Hall, M.N.7
-
18
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296-1302.
-
(2004)
Curr Biol
, vol.14
, Issue.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
-
19
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712): 1098-1101.
-
(2005)
Science
, vol.307
, Issue.5712
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
20
-
-
2342489456
-
eIF-4E expression and its role in malignancies and metastases
-
De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene. 2004;23(18):3189-3199.
-
(2004)
Oncogene
, vol.23
, Issue.18
, pp. 3189-3199
-
-
De Benedetti, A.1
Graff, J.R.2
-
21
-
-
2342641580
-
Targets and mechanisms for the regulation of translation in malignant transformation
-
Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene. 2004;23(18):3180-3188.
-
(2004)
Oncogene
, vol.23
, Issue.18
, pp. 3180-3188
-
-
Clemens, M.J.1
-
22
-
-
0035312747
-
Regulation of translation initiation by FRAP/mTOR
-
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807-826.
-
(2001)
Genes Dev
, vol.15
, Issue.7
, pp. 807-826
-
-
Gingras, A.C.1
Raught, B.2
Sonenberg, N.3
-
23
-
-
35648962915
-
Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation
-
DOI 10.1128/MCB.00760-07
-
Wang X, Yue P, Chan CB, et al. Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnkmediated eukaryotic translation initiation factor 4E phosphorylation. Mol Cell Biol. 2007;27(21): 7405-7413. (Pubitemid 350033648)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.21
, pp. 7405-7413
-
-
Wang, X.1
Yue, P.2
Chan, C.-B.3
Ye, K.4
Ueda, T.5
Watanabe-Fukunaga, R.6
Fukunaga, R.7
Fu, H.8
Khuri, F.R.9
Sun, S.-Y.10
-
24
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9-22.
-
(2007)
Cancer Cell
, vol.12
, Issue.1
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
25
-
-
20144363954
-
Antileukemic activity of rapamycin in acute myeloid leukemia
-
DOI 10.1182/blood-2004-06-2494
-
Recher C, Beyne-Rauzy O, Demur C, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood. 2005;105(6):2527-2534. (Pubitemid 40387055)
-
(2005)
Blood
, vol.105
, Issue.6
, pp. 2527-2534
-
-
Recher, C.1
Beyne-Rauzy, O.2
Demur, C.3
Chicanne, G.4
Dos Santos, C.5
Mansat-De Mas, V.6
Benzaquen, D.7
Laurent, G.8
Huguet, F.9
Payrastre, B.10
-
26
-
-
70350726344
-
A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia
-
Perl AE, Kasner MT, Tsai DE, et al. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res. 2009;15(21):6732-6739.
-
(2009)
Clin Cancer Res
, vol.15
, Issue.21
, pp. 6732-6739
-
-
Perl, A.E.1
Kasner, M.T.2
Tsai, D.E.3
-
27
-
-
22544444889
-
Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia
-
Sujobert P, Bardet V, Cornillet-Lefebvre P, et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood. 2005; 106(3):1063-1066.
-
(2005)
Blood
, vol.106
, Issue.3
, pp. 1063-1066
-
-
Sujobert, P.1
Bardet, V.2
Cornillet-Lefebvre, P.3
-
28
-
-
0035498939
-
Hierarchical phosphorylation of the translation inhibitor, 4E-BP1
-
Gingras AC, Raught B, Gygi SP, et al. Hierarchical phosphorylation of the translation inhibitor, 4E-BP1. Genes Dev. 2001;15(21):2852-2864.
-
(2001)
Genes Dev
, vol.15
, Issue.21
, pp. 2852-2864
-
-
Gingras, A.C.1
Raught, B.2
Gygi, S.P.3
-
29
-
-
57649137958
-
Isolation of hyperactive mutants of mammalian target of rapamycin
-
Ohne Y, Takahara T, Hatakeyama R, et al. Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem. 2008;283(46):31861-31870.
-
(2008)
J Biol Chem
, vol.283
, Issue.46
, pp. 31861-31870
-
-
Ohne, Y.1
Takahara, T.2
Hatakeyama, R.3
-
30
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010; 11(5):390-401.
-
(2010)
Cell Metab
, vol.11
, Issue.5
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
-
31
-
-
38049187096
-
Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by upregulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: Rationale for therapeutic inhibition of both pathways
-
Tamburini J, Chapuis N, Bardet V, et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by upregulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 2008;111(1):379-382.
-
(2008)
Blood
, vol.111
, Issue.1
, pp. 379-382
-
-
Tamburini, J.1
Chapuis, N.2
Bardet, V.3
-
32
-
-
77951046942
-
Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia
-
Callens C, Coulon S, Naudin J, et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J Exp Med. 2010;207(4): 731-750.
-
(2010)
J Exp Med
, vol.207
, Issue.4
, pp. 731-750
-
-
Callens, C.1
Coulon, S.2
Naudin, J.3
-
33
-
-
36849011687
-
The AMPK gamma1 R70Q mutant regulates multiple metabolic and growth pathways in neonatal cardiac myocytes
-
Folmes KD, Witters LA, Allard MF, Young ME, Dyck JR. The AMPK gamma1 R70Q mutant regulates multiple metabolic and growth pathways in neonatal cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007;293(6):H3456-3464.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.293
, Issue.6
-
-
Folmes, K.D.1
Witters, L.A.2
Allard, M.F.3
Young, M.E.4
Dyck, J.R.5
-
34
-
-
11244297916
-
Dysregulation of the TSC-mTOR pathway in human disease
-
DOI 10.1038/ng1494
-
Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37(1):19-24. (Pubitemid 40070934)
-
(2005)
Nature Genetics
, vol.37
, Issue.1
, pp. 19-24
-
-
Inoki, K.1
Corradetti, M.N.2
Guan, K.-L.3
-
35
-
-
67650312583
-
Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
-
Garcia-Martinez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009;421(1):29-42.
-
(2009)
Biochem J
, vol.421
, Issue.1
, pp. 29-42
-
-
Garcia-Martinez, J.M.1
Moran, J.2
Clarke, R.G.3
-
36
-
-
73349087844
-
LKB1 and mammalian target of rapamycin as predictive factors for the anticancer efficacy of metformin
-
author reply, e227
-
Memmott RM, Dennis PA. LKB1 and mammalian target of rapamycin as predictive factors for the anticancer efficacy of metformin. J Clin Oncol. 2009;27(34):e226;author reply, e227.
-
(2009)
J Clin Oncol
, vol.27
, Issue.34
-
-
Memmott, R.M.1
Dennis, P.A.2
-
37
-
-
36348950449
-
Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
-
DOI 10.1158/0008-5472.CAN-07-2310
-
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22): 10804-10812. (Pubitemid 350145909)
-
(2007)
Cancer Research
, vol.67
, Issue.22
, pp. 10804-10812
-
-
Dowling, R.J.O.1
Zakikhani, M.2
Fantus, I.G.3
Pollak, M.4
Sonenberg, N.5
-
38
-
-
34547114475
-
Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration
-
Zhang L, He H, Balschi JA. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol. 2007; 293(1):H457-466.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.293
, Issue.1
-
-
Zhang, L.1
He, H.2
Balschi, J.A.3
-
39
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, Kosmatka M, Bardeesy N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U SA. 2004;101(10):3329-3335.
-
(2004)
Proc Natl Acad Sci U SA
, vol.101
, Issue.10
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
-
40
-
-
33745218224
-
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase - Independent effect on glucokinase translocation
-
DOI 10.2337/diabetes.55.04.06.db05-1178
-
Guigas B, Bertrand L, Taleux N, et al. 5-Aminoimidazole-4-carboxamide-1- beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes. 2006;55(4):865-874. (Pubitemid 44100158)
-
(2006)
Diabetes
, vol.55
, Issue.4
, pp. 865-874
-
-
Guigas, B.1
Bertrand, L.2
Taleux, N.3
Foretz, M.4
Wiernsperger, N.5
Vertommen, D.6
Andreelli, F.7
Viollet, B.8
Hue, L.9
-
41
-
-
44849099894
-
The antidiabetic drug, metformin, exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level
-
Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug, metformin, exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene. 2008;27(25):3576-3586.
-
(2008)
Oncogene
, vol.27
, Issue.25
, pp. 3576-3586
-
-
Ben Sahra, I.1
Laurent, K.2
Loubat, A.3
-
42
-
-
36348998521
-
Mechanism of action of a-769662, a valuable tool for activation of AMP-activated protein kinase
-
Goransson O, McBride A, Hawley SA, et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem. 2007;282(45):32549-32560.
-
(2007)
J Biol Chem
, vol.282
, Issue.45
, pp. 32549-32560
-
-
Goransson, O.1
McBride, A.2
Hawley, S.A.3
-
43
-
-
42949139481
-
AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint
-
DOI 10.1016/j.molcel.2008.03.003, PII S109727650800169X
-
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214-226. (Pubitemid 351626684)
-
(2008)
Molecular Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
44
-
-
62849087835
-
The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner
-
Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol. 2009;29(3):640-649.
-
(2009)
Mol Cell Biol
, vol.29
, Issue.3
, pp. 640-649
-
-
Patursky-Polischuk, I.1
Stolovich-Rain, M.2
Hausner-Hanochi, M.3
-
45
-
-
23044482013
-
RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells
-
Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005;65(15):6719-6725.
-
(2005)
Cancer Res
, vol.65
, Issue.15
, pp. 6719-6725
-
-
Brusselmans, K.1
De Schrijver, E.2
Verhoeven, G.3
Swinnen, J.V.4
-
46
-
-
33744808464
-
Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival
-
Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 2006;66(10):5287-5294.
-
(2006)
Cancer Res
, vol.66
, Issue.10
, pp. 5287-5294
-
-
Chajes, V.1
Cambot, M.2
Moreau, K.3
Lenoir, G.M.4
Joulin, V.5
-
47
-
-
44449147036
-
Tumor Cell Metabolism: Cancer's Achilles' Heel
-
DOI 10.1016/j.ccr.2008.05.005, PII S1535610808001608
-
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008; 13(6):472-482. (Pubitemid 351766797)
-
(2008)
Cancer Cell
, vol.13
, Issue.6
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
48
-
-
34248142302
-
2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells
-
1
-
Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ, Spitz DR. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res. 1. 2007;67(7):3364-3370.
-
(2007)
Cancer Res
, vol.67
, Issue.7
, pp. 3364-3370
-
-
Simons, A.L.1
Ahmad, I.M.2
Mattson, D.M.3
Dornfeld, K.J.4
Spitz, D.R.5
-
49
-
-
51649088622
-
PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML
-
Park S, Chapuis N, Bardet V, et al. PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia. 2008;22(9):1698-1706.
-
(2008)
Leukemia
, vol.22
, Issue.9
, pp. 1698-1706
-
-
Park, S.1
Chapuis, N.2
Bardet, V.3
|