메뉴 건너뛰기




Volumn 21, Issue 7, 2010, Pages 441-448

Emerging roles for the TGFβ family in pancreatic β-cell homeostasis

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVIN; BONE MORPHOGENETIC PROTEIN 4; FOLLISTATIN; GROWTH DIFFERENTIATION FACTOR; MYOSTATIN; SMAD PROTEIN; TRANSFORMING GROWTH FACTOR BETA; GLUCOSE;

EID: 77954312234     PISSN: 10432760     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tem.2010.02.008     Document Type: Review
Times cited : (52)

References (59)
  • 1
    • 34249888775 scopus 로고    scopus 로고
    • and the Diabetes Genetics Initiative Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316.
    • Saxena, R. et al. and the Diabetes Genetics Initiative (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331-1336.
    • (2007) , pp. 1331-1336
    • Saxena, R.1
  • 2
    • 76749093118 scopus 로고    scopus 로고
    • Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A and MTNR1B affect different aspects of pancreatic beta cell function
    • Simonis-Bik A.M., et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A and MTNR1B affect different aspects of pancreatic beta cell function. Diabetes 2010, 59:293-301.
    • (2010) Diabetes , vol.59 , pp. 293-301
    • Simonis-Bik, A.M.1
  • 3
    • 70849098773 scopus 로고    scopus 로고
    • Pathomechanisms of type 2 diabetes genes
    • Staiger H., et al. Pathomechanisms of type 2 diabetes genes. Endocr. Rev. 2009, 30:557-585.
    • (2009) Endocr. Rev. , vol.30 , pp. 557-585
    • Staiger, H.1
  • 5
    • 47549090432 scopus 로고    scopus 로고
    • TGFβ in Cancer
    • Massague J. TGFβ in Cancer. Cell 2008, 134:215-230.
    • (2008) Cell , vol.134 , pp. 215-230
    • Massague, J.1
  • 7
    • 0038682002 scopus 로고    scopus 로고
    • Mechanisms of TGF-beta signaling from cell membrane to the nucleus
    • Shi Y., Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113:685-700.
    • (2003) Cell , vol.113 , pp. 685-700
    • Shi, Y.1    Massague, J.2
  • 8
    • 70649098149 scopus 로고    scopus 로고
    • Intricacies of BMP receptor assembly
    • Nickel J., et al. Intricacies of BMP receptor assembly. Cytokine Growth Factor Rev. 2009, 20:367-377.
    • (2009) Cytokine Growth Factor Rev. , vol.20 , pp. 367-377
    • Nickel, J.1
  • 9
    • 33747762981 scopus 로고    scopus 로고
    • Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis
    • Andersson O., et al. Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Rep. 2006, 7:831-837.
    • (2006) EMBO Rep. , vol.7 , pp. 831-837
    • Andersson, O.1
  • 10
    • 0036790467 scopus 로고    scopus 로고
    • Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium
    • Welt C., et al. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp. Biol. Med. (Maywood) 2002, 227:724-752.
    • (2002) Exp. Biol. Med. (Maywood) , vol.227 , pp. 724-752
    • Welt, C.1
  • 11
    • 0037706944 scopus 로고    scopus 로고
    • Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate
    • Kumar M., et al. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev. Biol. 2003, 259:109-122.
    • (2003) Dev. Biol. , vol.259 , pp. 109-122
    • Kumar, M.1
  • 12
    • 0036777339 scopus 로고    scopus 로고
    • Signaling and transcriptional control of pancreatic organogenesis
    • Kim S.K., MacDonald R.J. Signaling and transcriptional control of pancreatic organogenesis. Curr. Opin. Genet. Dev. 2002, 12:540-547.
    • (2002) Curr. Opin. Genet. Dev. , vol.12 , pp. 540-547
    • Kim, S.K.1    MacDonald, R.J.2
  • 13
    • 72149087678 scopus 로고    scopus 로고
    • Reprogramming into pancreatic endocrine cells based on developmental cues
    • Kordowich S., et al. Reprogramming into pancreatic endocrine cells based on developmental cues. Mol. Cell. Endocrinol. 2010, 315:11-18.
    • (2010) Mol. Cell. Endocrinol. , vol.315 , pp. 11-18
    • Kordowich, S.1
  • 14
    • 33746817104 scopus 로고    scopus 로고
    • Specifying pancreatic endocrine cell fates
    • Collombat P., et al. Specifying pancreatic endocrine cell fates. Mech. Dev. 2006, 123:501-512.
    • (2006) Mech. Dev. , vol.123 , pp. 501-512
    • Collombat, P.1
  • 15
    • 0029766147 scopus 로고    scopus 로고
    • Immunohistochemical localization of activin A and follistatin in human tissues
    • Wada M., et al. Immunohistochemical localization of activin A and follistatin in human tissues. Endocr. J. 1996, 43:375-385.
    • (1996) Endocr. J. , vol.43 , pp. 375-385
    • Wada, M.1
  • 16
    • 0027478510 scopus 로고
    • Expression of alpha, beta A and beta B subunits of inhibin or activin and follistatin in rat pancreatic islets
    • Ogawa K., et al. Expression of alpha, beta A and beta B subunits of inhibin or activin and follistatin in rat pancreatic islets. FEBS Lett. 1993, 319:217-220.
    • (1993) FEBS Lett. , vol.319 , pp. 217-220
    • Ogawa, K.1
  • 17
    • 0032527922 scopus 로고    scopus 로고
    • Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants
    • Yamaoka T., et al. Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. J. Clin. Invest 1998, 102:294-301.
    • (1998) J. Clin. Invest , vol.102 , pp. 294-301
    • Yamaoka, T.1
  • 18
    • 0033869726 scopus 로고    scopus 로고
    • Activin receptor patterning of foregut organogenesis
    • Kim S.K., et al. Activin receptor patterning of foregut organogenesis. Genes Dev. 2000, 14:1866-1871.
    • (2000) Genes Dev. , vol.14 , pp. 1866-1871
    • Kim, S.K.1
  • 19
    • 0034065806 scopus 로고    scopus 로고
    • Activin A stimulates insulin secretion in cultured human pancreatic islets
    • Florio P., et al. Activin A stimulates insulin secretion in cultured human pancreatic islets. J. Endocrinol. Invest 2000, 23:231-234.
    • (2000) J. Endocrinol. Invest , vol.23 , pp. 231-234
    • Florio, P.1
  • 20
    • 0027237812 scopus 로고
    • Activin A: its effects on rat pancreatic islets and the mechanism of action involved
    • Verspohl E.J., et al. Activin A: its effects on rat pancreatic islets and the mechanism of action involved. Life Sci. 1993, 53:1069-1078.
    • (1993) Life Sci. , vol.53 , pp. 1069-1078
    • Verspohl, E.J.1
  • 21
    • 0024286302 scopus 로고
    • A novel action of activin A: stimulation of insulin secretion in rat pancreatic islets
    • Totsuka Y., et al. A novel action of activin A: stimulation of insulin secretion in rat pancreatic islets. Biochem. Biophys. Res. Commun. 1988, 156:335-339.
    • (1988) Biochem. Biophys. Res. Commun. , vol.156 , pp. 335-339
    • Totsuka, Y.1
  • 22
    • 44449147958 scopus 로고    scopus 로고
    • Activin B receptor ALK7 is a negative regulator of pancreatic β-cell function
    • Bertolino P., et al. Activin B receptor ALK7 is a negative regulator of pancreatic β-cell function. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:7246-7251.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 7246-7251
    • Bertolino, P.1
  • 23
    • 35649014826 scopus 로고    scopus 로고
    • MafA regulates expression of genes important to islet β-cell function
    • Matsuoka T.A., et al. MafA regulates expression of genes important to islet β-cell function. Mol. Endocrinol. 2007, 21:2764-2774.
    • (2007) Mol. Endocrinol. , vol.21 , pp. 2764-2774
    • Matsuoka, T.A.1
  • 24
    • 14544304564 scopus 로고    scopus 로고
    • The gene Pax4 is an essential regulator of pancreatic beta-cell development
    • Sosa-Pineda B. The gene Pax4 is an essential regulator of pancreatic beta-cell development. Mol. Cells 2004, 18:289-294.
    • (2004) Mol. Cells , vol.18 , pp. 289-294
    • Sosa-Pineda, B.1
  • 25
    • 11244311918 scopus 로고    scopus 로고
    • The diabetes-linked transcription factor PAX4 promotes β-cell proliferation and survival in rat and human islets
    • Brun T., et al. The diabetes-linked transcription factor PAX4 promotes β-cell proliferation and survival in rat and human islets. J. Cell Biol. 2004, 167:1123-1135.
    • (2004) J. Cell Biol. , vol.167 , pp. 1123-1135
    • Brun, T.1
  • 26
    • 39549115241 scopus 로고    scopus 로고
    • A focus on the role of Pax4 in mature pancreatic islet β-cell expansion and survival in health and disease
    • Brun T., Gauthier B.R. A focus on the role of Pax4 in mature pancreatic islet β-cell expansion and survival in health and disease. J. Mol. Endocrinol. 2008, 40:37-45.
    • (2008) J. Mol. Endocrinol. , vol.40 , pp. 37-45
    • Brun, T.1    Gauthier, B.R.2
  • 27
    • 35348957846 scopus 로고    scopus 로고
    • Genetic interactions between activin type IIB receptor and Smad2 genes in asymmetrical patterning of the thoracic organs and the development of pancreas islets
    • Goto Y., et al. Genetic interactions between activin type IIB receptor and Smad2 genes in asymmetrical patterning of the thoracic organs and the development of pancreas islets. Dev. Dyn. 2007, 236:2865-2874.
    • (2007) Dev. Dyn. , vol.236 , pp. 2865-2874
    • Goto, Y.1
  • 28
    • 0032952973 scopus 로고    scopus 로고
    • Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor
    • Shiozaki S., et al. Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor. Biochim. Biophys. Acta 1999, 1450:1-11.
    • (1999) Biochim. Biophys. Acta , vol.1450 , pp. 1-11
    • Shiozaki, S.1
  • 29
    • 1442276960 scopus 로고    scopus 로고
    • Activin A and betacellulin: effect on regeneration of pancreatic beta-cells in neonatal streptozotocin-treated rats
    • Li L., et al. Activin A and betacellulin: effect on regeneration of pancreatic beta-cells in neonatal streptozotocin-treated rats. Diabetes 2004, 53:608-615.
    • (2004) Diabetes , vol.53 , pp. 608-615
    • Li, L.1
  • 30
    • 33750402400 scopus 로고    scopus 로고
    • Activin B can signal through both ALK4 and ALK7 in gonadotrope cells
    • Bernard D.J., et al. Activin B can signal through both ALK4 and ALK7 in gonadotrope cells. Reprod. Biol. Endocrinol. 2006, 4:52.
    • (2006) Reprod. Biol. Endocrinol. , vol.4 , pp. 52
    • Bernard, D.J.1
  • 31
    • 56049114635 scopus 로고    scopus 로고
    • Insulin gene is a target in activin receptor-like kinase 7 signaling pathway in pancreatic β-cells
    • Watanabe R., et al. Insulin gene is a target in activin receptor-like kinase 7 signaling pathway in pancreatic β-cells. Biochem. Biophys. Res. Commun. 2008, 377:867-872.
    • (2008) Biochem. Biophys. Res. Commun. , vol.377 , pp. 867-872
    • Watanabe, R.1
  • 32
    • 0027237249 scopus 로고
    • Existence of activin-A in A- and D-cells of rat pancreatic islet
    • Yasuda H., et al. Existence of activin-A in A- and D-cells of rat pancreatic islet. Endocrinology 1993, 133:624-630.
    • (1993) Endocrinology , vol.133 , pp. 624-630
    • Yasuda, H.1
  • 33
    • 33845989470 scopus 로고    scopus 로고
    • Activin A decreases glucagon and arx gene expression in α cell lines
    • Mamin A., Philippe J. Activin A decreases glucagon and arx gene expression in α cell lines. Mol. Endocrinol. 2006, 21:259-273.
    • (2006) Mol. Endocrinol. , vol.21 , pp. 259-273
    • Mamin, A.1    Philippe, J.2
  • 34
    • 68149162957 scopus 로고    scopus 로고
    • The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells
    • Collombat P., et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009, 138:449-462.
    • (2009) Cell , vol.138 , pp. 449-462
    • Collombat, P.1
  • 35
    • 3242765289 scopus 로고    scopus 로고
    • Inhibition of activin signaling induces pancreatic epithelial cell expansion and diminishes terminal differentiation of pancreatic beta-cells
    • Zhang Y.Q., et al. Inhibition of activin signaling induces pancreatic epithelial cell expansion and diminishes terminal differentiation of pancreatic beta-cells. Diabetes 2004, 53:2024-2033.
    • (2004) Diabetes , vol.53 , pp. 2024-2033
    • Zhang, Y.Q.1
  • 36
    • 34247626305 scopus 로고    scopus 로고
    • Effects of activin A on pancreatic ductal cells in streptozotocin-induced diabetic rats
    • Park M.K., et al. Effects of activin A on pancreatic ductal cells in streptozotocin-induced diabetic rats. Transplantation 2007, 83:925-930.
    • (2007) Transplantation , vol.83 , pp. 925-930
    • Park, M.K.1
  • 37
    • 58149378342 scopus 로고    scopus 로고
    • Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth
    • Inada A., et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:19915-19919.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 19915-19919
    • Inada, A.1
  • 38
    • 71649092364 scopus 로고    scopus 로고
    • Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth
    • Solar M., et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev. Cell 2009, 17:849-860.
    • (2009) Dev. Cell , vol.17 , pp. 849-860
    • Solar, M.1
  • 39
    • 38749108893 scopus 로고    scopus 로고
    • Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas
    • Xu X., et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008, 132:197-207.
    • (2008) Cell , vol.132 , pp. 197-207
    • Xu, X.1
  • 40
    • 0027285531 scopus 로고
    • Synthesis and expression of transforming growth factor beta-1, beta-2, and beta-3 in the endocrine and exocrine pancreas
    • Yamanaka Y., et al. Synthesis and expression of transforming growth factor beta-1, beta-2, and beta-3 in the endocrine and exocrine pancreas. Diabetes. 1993, 42:746-756.
    • (1993) Diabetes. , vol.42 , pp. 746-756
    • Yamanaka, Y.1
  • 41
    • 0034805576 scopus 로고    scopus 로고
    • Expression of SMAD signal transduction molecules in the pancreas
    • Brorson M., et al. Expression of SMAD signal transduction molecules in the pancreas. Histochem. Cell Biol. 2001, 116:263-267.
    • (2001) Histochem. Cell Biol. , vol.116 , pp. 263-267
    • Brorson, M.1
  • 42
    • 0024502761 scopus 로고
    • Stimulation of insulin secretion by transforming growth factor-beta
    • Totsuka Y., et al. Stimulation of insulin secretion by transforming growth factor-beta. Biochem. Biophys. Res. Commun. 1989, 158:1060-1065.
    • (1989) Biochem. Biophys. Res. Commun. , vol.158 , pp. 1060-1065
    • Totsuka, Y.1
  • 43
    • 0025755588 scopus 로고
    • TGF-beta stimulates insulin secretion and blocks mitogenic response of pancreatic beta-cells to glucose
    • Sjoholm A., Hellerstrom C. TGF-beta stimulates insulin secretion and blocks mitogenic response of pancreatic beta-cells to glucose. Am. J. Physiol. Cell Physiol. 1991, 260:C1046-C1051.
    • (1991) Am. J. Physiol. Cell Physiol. , vol.260
    • Sjoholm, A.1    Hellerstrom, C.2
  • 44
    • 0033976650 scopus 로고    scopus 로고
    • Transforming growth factor beta induction of insulin gene expression is mediated by pancreatic and duodenal homeobox gene-1 in rat insulinoma cells
    • Sayo Y., et al. Transforming growth factor beta induction of insulin gene expression is mediated by pancreatic and duodenal homeobox gene-1 in rat insulinoma cells. Eur. J. Biochem. 2000, 267:971-978.
    • (2000) Eur. J. Biochem. , vol.267 , pp. 971-978
    • Sayo, Y.1
  • 45
    • 66449119468 scopus 로고    scopus 로고
    • Transforming growth factor-β/Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function
    • Lin H.M., et al. Transforming growth factor-β/Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function. J. Biol. Chem. 2009, 284:12246-12257.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12246-12257
    • Lin, H.M.1
  • 46
    • 0036700341 scopus 로고    scopus 로고
    • Expression of transgene encoded TGF-beta in islets prevents autoimmune diabetes in NOD mice by a local mechanism
    • Grewal I.S., et al. Expression of transgene encoded TGF-beta in islets prevents autoimmune diabetes in NOD mice by a local mechanism. J. Autoimmun. 2002, 19:9-22.
    • (2002) J. Autoimmun. , vol.19 , pp. 9-22
    • Grewal, I.S.1
  • 47
    • 0029017902 scopus 로고
    • Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-beta 1
    • Lee M.S., et al. Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-beta 1. Am. J. Pathol. 1995, 147:42-52.
    • (1995) Am. J. Pathol. , vol.147 , pp. 42-52
    • Lee, M.S.1
  • 48
    • 10944221356 scopus 로고    scopus 로고
    • Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-β1
    • Moritani M., et al. Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-β1. Mol. Cell Endocrinol. 2005, 229:175-184.
    • (2005) Mol. Cell Endocrinol. , vol.229 , pp. 175-184
    • Moritani, M.1
  • 49
    • 33244464960 scopus 로고    scopus 로고
    • Conditional expression of Smad7 in pancreatic beta cells disrupts TGF-beta signaling and induces reversible diabetes mellitus
    • Smart N.G., et al. Conditional expression of Smad7 in pancreatic beta cells disrupts TGF-beta signaling and induces reversible diabetes mellitus. PLoS Biol. 2006, 4:e39.
    • (2006) PLoS Biol. , vol.4
    • Smart, N.G.1
  • 50
    • 12344313566 scopus 로고    scopus 로고
    • + islet progenitor cell number and promotes beta-cell differentiation in pancreas development
    • + islet progenitor cell number and promotes beta-cell differentiation in pancreas development. Development 2004, 131:6163-6174.
    • (2004) Development , vol.131 , pp. 6163-6174
    • Harmon, E.B.1
  • 51
    • 0036200822 scopus 로고    scopus 로고
    • Suppression of body fat accumulation in myostatin-deficient mice
    • McPherron A.C., Lee S.J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest. 2002, 109:595-601.
    • (2002) J. Clin. Invest. , vol.109 , pp. 595-601
    • McPherron, A.C.1    Lee, S.J.2
  • 52
    • 0031010050 scopus 로고    scopus 로고
    • Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member
    • McPherron A.C., et al. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387:83-90.
    • (1997) Nature , vol.387 , pp. 83-90
    • McPherron, A.C.1
  • 53
    • 63349107479 scopus 로고    scopus 로고
    • Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity
    • Guo T., et al. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 2009, 4:e4937.
    • (2009) PLoS One , vol.4
    • Guo, T.1
  • 54
    • 33847256507 scopus 로고    scopus 로고
    • BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion
    • Goulley J., et al. BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell Metab. 2007, 5:207-219.
    • (2007) Cell Metab. , vol.5 , pp. 207-219
    • Goulley, J.1
  • 55
    • 0034918750 scopus 로고    scopus 로고
    • Human follistatin-related protein: a structural homologue of follistatin with nuclear localization
    • Tortoriello D.V., et al. Human follistatin-related protein: a structural homologue of follistatin with nuclear localization. Endocrinology 2001, 142:3426-3434.
    • (2001) Endocrinology , vol.142 , pp. 3426-3434
    • Tortoriello, D.V.1
  • 56
    • 33745175570 scopus 로고    scopus 로고
    • Biological activity of follistatin isoforms and follistatin like-3 are dependent on differential cell surface binding and specificity for activin, myostatin and BMPs
    • Sidis Y., et al. Biological activity of follistatin isoforms and follistatin like-3 are dependent on differential cell surface binding and specificity for activin, myostatin and BMPs. Endocrinology 2006, 147:3586-3597.
    • (2006) Endocrinology , vol.147 , pp. 3586-3597
    • Sidis, Y.1
  • 57
    • 50449091974 scopus 로고    scopus 로고
    • Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin
    • Schneyer A.L., et al. Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin. Endocrinology 2008, 149:4589-4595.
    • (2008) Endocrinology , vol.149 , pp. 4589-4595
    • Schneyer, A.L.1
  • 58
    • 33846633796 scopus 로고    scopus 로고
    • FSTL3 deletion reveals roles for TGF-beta family ligands in glucose and fat homeostasis in adults
    • Mukherjee A., et al. FSTL3 deletion reveals roles for TGF-beta family ligands in glucose and fat homeostasis in adults. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:1348-1353.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 1348-1353
    • Mukherjee, A.1
  • 59
    • 0028918915 scopus 로고
    • Multiple defects and perinatal death in mice deficient in follistatin
    • Matzuk M.M., et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 1995, 374:360-363.
    • (1995) Nature , vol.374 , pp. 360-363
    • Matzuk, M.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.