-
1
-
-
5444264003
-
Biological control through regulated tran-scriptional coactivators
-
Spiegelman BM, Heinrich R. Biological control through regulated tran-scriptional coactivators. Cell. 2004;119:157-167.
-
(2004)
Cell
, vol.119
, pp. 157-167
-
-
Spiegelman, B.M.1
Heinrich, R.2
-
2
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive ther-mogenesis
-
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive ther-mogenesis. Cell. 1998;92:829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
3
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1:361-370.
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
4
-
-
33845596500
-
Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
-
Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27:728-735.
-
(2006)
Endocr Rev
, vol.27
, pp. 728-735
-
-
Handschin, C.1
Spiegelman, B.M.2
-
5
-
-
56049107038
-
PGC-1 coactivators and skeletal muscle adaptations in health and disease
-
Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev. 2008;18:426-434.
-
(2008)
Curr Opin Genet Dev
, vol.18
, pp. 426-434
-
-
Arany, Z.1
-
6
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
DOI 10.1038/35093131
-
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413:179-183. (Pubitemid 32867880)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
Rudolph, D.7
Schutz, G.8
Yoon, C.9
Puigserver, P.10
Spiegelman, B.11
Montminy, M.12
-
7
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1
-
DOI 10.1038/35093050
-
Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131-138. (Pubitemid 32867868)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
8
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
Zhang, C.Y.4
Wu, Z.5
Boss, O.6
Michael, L.F.7
Puigserver, P.8
Isotani, E.9
Olson, E.N.10
Lowell, B.B.11
Bassel-Duby, R.12
Spiegelman, B.M.13
-
9
-
-
37549025047
-
A role for the transcriptional coactivator PGC-1alpha in muscle refueling
-
Wende AR, Schaeffer PJ, Parker GJ, Zechner C, Han DH, Chen MM, Hancock CR, Lehman JJ, Huss JM, McClain DA, Holloszy JO, Kelly DP. A role for the transcriptional coactivator PGC-1alpha in muscle refueling. J Biol Chem. 2007;282:36642-36651.
-
(2007)
J Biol Chem
, vol.282
, pp. 36642-36651
-
-
Wende, A.R.1
Schaeffer, P.J.2
Parker, G.J.3
Zechner, C.4
Han, D.H.5
Chen, M.M.6
Hancock, C.R.7
Lehman, J.J.8
Huss, J.M.9
McClain, D.A.10
Holloszy, J.O.11
Kelly, D.P.12
-
10
-
-
45149108625
-
Muscle-specific expression of PPAR{gamma} coactivator-1{alpha} improves exercise performance and increases peak oxygen uptake
-
Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, Stevenson SC, Rangwala SM. Muscle-specific expression of PPAR{gamma} coactivator-1{alpha} improves exercise performance and increases peak oxygen uptake. J Appl Physiol. 2008;104:1304-1312.
-
(2008)
J Appl Physiol
, vol.104
, pp. 1304-1312
-
-
Calvo, J.A.1
Daniels, T.G.2
Wang, X.3
Paul, A.4
Lin, J.5
Spiegelman, B.M.6
Stevenson, S.C.7
Rangwala, S.M.8
-
11
-
-
22144434964
-
Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle
-
Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1:259-271.
-
(2005)
Cell Metab
, vol.1
, pp. 259-271
-
-
Arany, Z.1
He, H.2
Lin, J.3
Hoyer, K.4
Handschin, C.5
Toka, O.6
Ahmad, F.7
Matsui, T.8
Chin, S.9
Wu, P.H.10
Rybkin, I.I.11
Shelton, J.M.12
Manieri, M.13
Cinti, S.14
Schoen, F.J.15
Bassel-Duby, R.16
Rosenzweig, A.17
Ingwall, J.S.18
Spiegelman, B.M.19
-
12
-
-
33745627066
-
Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-y coactivator 1a
-
Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-y coactivator 1a. Proc Natl Acad Sci USA. 2006;103: 10086-10091.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 10086-10091
-
-
Arany, Z.1
Novikov, M.2
Chin, S.3
Ma, Y.4
Rosenzweig, A.5
Spiegelman, B.M.6
-
13
-
-
49849085702
-
The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis
-
Lehman JJ, Boudina S, Banke NH, Sambandam N, Han X, Young DM, Leone TC, Gross RW, Lewandowski ED, Abel ED, Kelly DP. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. Am J Physiol Heart Circ Physiol. 2008;295:H185-H196.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.295
-
-
Lehman, J.J.1
Boudina, S.2
Banke, N.H.3
Sambandam, N.4
Han, X.5
Young, D.M.6
Leone, T.C.7
Gross, R.W.8
Lewandowski, E.D.9
Abel, E.D.10
Kelly, D.P.11
-
14
-
-
33749247065
-
Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells
-
Wu Z, Huang X, Feng Y, Handschin C, Gullicksen PS, Bare O, Labow M, Spiegelman B, Stevenson SC. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci USA. 2006;103: 14379-14384.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 14379-14384
-
-
Wu, Z.1
Huang, X.2
Feng, Y.3
Handschin, C.4
Gullicksen, P.S.5
Bare, O.6
Labow, M.7
Spiegelman, B.8
Stevenson, S.C.9
-
15
-
-
20744441357
-
Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes
-
Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F, Bai X, Floering LM, Collins S. Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol. 2005;25: 5466-5479.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 5466-5479
-
-
Robidoux, J.1
Cao, W.2
Quan, H.3
Daniel, K.W.4
Moukdar, F.5
Bai, X.6
Floering, L.M.7
Collins, S.8
-
16
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
-
Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16:1879-1886.
-
(2002)
FASEB J
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.E.3
Marison, M.4
Nolte, L.A.5
Chen, M.6
Kelly, D.P.7
Holloszy, J.O.8
-
17
-
-
25844432311
-
Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency
-
Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm GL, Yan Z, Newgard CB, Muoio DM. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem. 2005;280:33588-33598.
-
(2005)
J Biol Chem
, vol.280
, pp. 33588-33598
-
-
Koves, T.R.1
Li, P.2
An, J.3
Akimoto, T.4
Slentz, D.5
Ilkayeva, O.6
Dohm, G.L.7
Yan, Z.8
Newgard, C.B.9
Muoio, D.M.10
-
18
-
-
0347993714
-
PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle
-
Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol. 2004;96:189-194.
-
(2004)
J Appl Physiol
, vol.96
, pp. 189-194
-
-
Norrbom, J.1
Sundberg, C.J.2
Ameln, H.3
Kraus, W.E.4
Jansson, E.5
Gustafsson, T.6
-
19
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coacti-vator-1
-
Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coacti-vator-1. Mol Cell. 2001;8:971-982.
-
(2001)
Mol Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
Rhee, J.2
Lin, J.3
Wu, Z.4
Yoon, J.C.5
Zhang, C.Y.6
Krauss, S.7
Mootha, V.K.8
Lowell, B.B.9
Spiegelman, B.M.10
-
20
-
-
0035859836
-
Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor
-
Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci USA. 2001;98:9713-9718.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 9713-9718
-
-
Knutti, D.1
Kressler, D.2
Kralli, A.3
-
21
-
-
10744222588
-
Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: Modulation by p38 MAPK
-
Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, Lin J, Jaeger S, Erdjument-Bromage H, Tempst P, Spiegelman BM. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 2004;18:278-289.
-
(2004)
Genes Dev
, vol.18
, pp. 278-289
-
-
Fan, M.1
Rhee, J.2
St-Pierre, J.3
Handschin, C.4
Puigserver, P.5
Lin, J.6
Jaeger, S.7
Erdjument-Bromage, H.8
Tempst, P.9
Spiegelman, B.M.10
-
22
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;104:12017-12022.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
23
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
-
Li X, Monks B, Ge Q, Birnbaum MJ. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature. 2007;447:1012-1016.
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
24
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1a
-
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1a. EMBO J. 2007;26:1913-1923.
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
25
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
26
-
-
22344440666
-
Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation
-
Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR. Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev. 2005;19:1466-1473.
-
(2005)
Genes Dev
, vol.19
, pp. 1466-1473
-
-
Teyssier, C.1
Ma, H.2
Emter, R.3
Kralli, A.4
Stallcup, M.R.5
-
27
-
-
39749140405
-
HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1a
-
Arany Z, Foo S-Y, Ma Y, Ruas J, Bommi-Reddy A, Girnun GD, Cooper M, Laznik D, Chinsomboon J, Rangwala S, Baek K-H, Rosenzweig A, Spiegelman B. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1a. Nature. 2008;451:1008-1012.
-
(2008)
Nature
, vol.451
, pp. 1008-1012
-
-
Arany, Z.1
Foo, S.-Y.2
Ma, Y.3
Ruas, J.4
Bommi-Reddy, A.5
Girnun, G.D.6
Cooper, M.7
Laznik, D.8
Chinsomboon, J.9
Rangwala, S.10
Baek, K.-H.11
Rosenzweig, A.12
Spiegelman, B.13
-
28
-
-
39849094082
-
Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism
-
Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci. 2008;28:2015-2024.
-
(2008)
J Neurosci
, vol.28
, pp. 2015-2024
-
-
Gutsaeva, D.R.1
Carraway, M.S.2
Suliman, H.B.3
Demchenko, I.T.4
Shitara, H.5
Yonekawa, H.6
Piantadosi, C.A.7
-
29
-
-
0842313246
-
Mammalian hibernation: Transcriptional and translational controls
-
Storey KB. Mammalian hibernation: transcriptional and translational controls. Adv Exp Med Biol. 2003;543:21-38.
-
(2003)
Adv Exp Med Biol
, vol.543
, pp. 21-38
-
-
Storey, K.B.1
-
30
-
-
55749114205
-
Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury
-
Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke. 2008;39:3057-3063.
-
(2008)
Stroke
, vol.39
, pp. 3057-3063
-
-
Yin, W.1
Signore, A.P.2
Iwai, M.3
Cao, G.4
Gao, Y.5
Chen, J.6
-
31
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
Geny, B.11
Laakso, M.12
Puigserver, P.13
Auwerx, J.14
-
32
-
-
34548359103
-
Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury
-
West T, Atzeva M, Holtzman DM. Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev Neurosci. 2007;29:363-372.
-
(2007)
Dev Neurosci
, vol.29
, pp. 363-372
-
-
West, T.1
Atzeva, M.2
Holtzman, D.M.3
-
33
-
-
36049028935
-
HIF-1a in endurance training: Suppression of oxidative metabolism
-
Mason SD, Rundqvist H, Papandreou I, Duh R, McNulty WJ, Howlett RA, Olfert IM, Sundberg CJ, Denko NC, Poellinger L, Johnson RS. HIF-1a in endurance training: suppression of oxidative metabolism. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2059-R2069.
-
(2007)
Am J Physiol Regul Integr Comp Physiol
, vol.293
-
-
Mason, S.D.1
Rundqvist, H.2
Papandreou, I.3
Duh, R.4
McNulty, W.J.5
Howlett, R.A.6
Olfert, I.M.7
Sundberg, C.J.8
Denko, N.C.9
Poellinger, L.10
Johnson, R.S.11
-
34
-
-
60549087508
-
PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells
-
O'Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Cummins EP, Monfared M, Agbor TA, Garvey JF, Papkovsky DB, Taylor CT, Allan BB. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci USA. 2009;106:2188-2193.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 2188-2193
-
-
O'Hagan, K.A.1
Cocchiglia, S.2
Zhdanov, A.V.3
Tambuwala, M.M.4
Cummins, E.P.5
Monfared, M.6
Agbor, T.A.7
Garvey, J.F.8
Papkovsky, D.B.9
Taylor, C.T.10
Allan, B.B.11
-
35
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20:1868-1876.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
36
-
-
0035920140
-
Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: A mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation
-
Huss JM, Levy FH, Kelly DP. Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem. 2001;276: 27605-27612.
-
(2001)
J Biol Chem
, vol.276
, pp. 27605-27612
-
-
Huss, J.M.1
Levy, F.H.2
Kelly, D.P.3
-
37
-
-
33747596652
-
Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia
-
Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807-819.
-
(2006)
Exp Physiol
, vol.91
, pp. 807-819
-
-
Guzy, R.D.1
Schumacker, P.T.2
-
38
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397-408.
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
Silvaggi, J.M.4
Rhee, J.5
Jager, S.6
Handschin, C.7
Zheng, K.8
Lin, J.9
Yang, W.10
Simon, D.K.11
Bachoo, R.12
Spiegelman, B.M.13
-
39
-
-
19444365211
-
PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells
-
Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66:562-573.
-
(2005)
Cardiovasc Res
, vol.66
, pp. 562-573
-
-
Valle, I.1
Alvarez-Barrientos, A.2
Arza, E.3
Lamas, S.4
Monsalve, M.5
-
40
-
-
33845670719
-
Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha
-
Borniquel S, Valle I, Cadenas S, Lamas S, Monsalve M. Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha. FASEB J. 2006;20:1889-1891.
-
(2006)
FASEB J
, vol.20
, pp. 1889-1891
-
-
Borniquel, S.1
Valle, I.2
Cadenas, S.3
Lamas, S.4
Monsalve, M.5
-
41
-
-
21144446106
-
PGC-1a deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semen-kovich CF, Kelly DP. PGC-1a deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3:e101.
-
(2005)
PLoS Biol
, vol.3
-
-
Leone, T.C.1
Lehman, J.J.2
Finck, B.N.3
Schaeffer, P.J.4
Wende, A.R.5
Boudina, S.6
Courtois, M.7
Wozniak, D.F.8
Sambandam, N.9
Bernal-Mizrachi, C.10
Chen, Z.11
Holloszy, J.O.12
Medeiros, D.M.13
Schmidt, R.E.14
Saffitz, J.E.15
Abel, E.D.16
Semen-Kovich, C.F.17
Kelly, D.P.18
-
42
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119:121-135.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
Lindenberg, K.S.4
St-Pierre, J.5
Zhang, C.Y.6
Mootha, V.K.7
Jager, S.8
Vianna, C.R.9
Reznick, R.M.10
Cui, L.11
Manieri, M.12
Donovan, M.X.13
Wu, Z.14
Cooper, M.P.15
Fan, M.C.16
Rohas, L.M.17
Zavacki, A.M.18
Cinti, S.19
Shulman, G.I.20
Lowell, B.B.21
Krainc, D.22
Spiegelman, B.M.23
more..
-
43
-
-
35148828429
-
Hypoxia-inducible factor 1 (HIF-1) pathway
-
cm8
-
Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007;2007:cm8.
-
(2007)
Sci STKE
, vol.2007
-
-
Semenza, G.L.1
-
44
-
-
8344237449
-
Hydroxylation of HIF-1: Oxygen sensing at the molecular level
-
Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda). 2004;19:176-182.
-
(2004)
Physiology (Bethesda)
, vol.19
, pp. 176-182
-
-
Semenza, G.L.1
-
45
-
-
24144444133
-
Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
-
Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005;1:409-414.
-
(2005)
Cell Metab
, vol.1
, pp. 409-414
-
-
Brunelle, J.K.1
Bell, E.L.2
Quesada, N.M.3
Vercauteren, K.4
Tiranti, V.5
Zeviani, M.6
Scarpulla, R.C.7
Chandel, N.S.8
-
46
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
-
Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401-408.
-
(2005)
Cell Metab
, vol.1
, pp. 401-408
-
-
Guzy, R.D.1
Hoyos, B.2
Robin, E.3
Chen, H.4
Liu, L.5
Mansfield, K.D.6
Simon, M.C.7
Hammerling, U.8
Schumacker, P.T.9
-
47
-
-
24144447915
-
Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation
-
Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 2005;1:393-399.
-
(2005)
Cell Metab
, vol.1
, pp. 393-399
-
-
Mansfield, K.D.1
Guzy, R.D.2
Pan, Y.3
Young, R.M.4
Cash, T.P.5
Schumacker, P.T.6
Simon, M.C.7
-
48
-
-
0347579845
-
Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide
-
Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003;299:896-899.
-
(2003)
Science
, vol.299
, pp. 896-899
-
-
Nisoli, E.1
Clementi, E.2
Paolucci, C.3
Cozzi, V.4
Tonello, C.5
Sciorati, C.6
Bracale, R.7
Valerio, A.8
Francolini, M.9
Moncada, S.10
Carruba, M.O.11
-
49
-
-
33745172454
-
Redox sensor CtBP mediates hypoxia-induced tumor cell migration
-
Zhang Q, Wang SY, Nottke AC, Rocheleau JV, Piston DW, Goodman RH. Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci USA. 2006;103:9029-9033.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 9029-9033
-
-
Zhang, Q.1
Wang, S.Y.2
Nottke, A.C.3
Rocheleau, J.V.4
Piston, D.W.5
Goodman, R.H.6
-
50
-
-
33846505019
-
Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
-
Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, Goodman RH. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA. 2007;104: 829-833.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 829-833
-
-
Zhang, Q.1
Wang, S.Y.2
Fleuriel, C.3
Leprince, D.4
Rocheleau, J.V.5
Piston, D.W.6
Goodman, R.H.7
-
51
-
-
20844451123
-
AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15-25.
-
(2005)
Cell Metab
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
Alquier, T.2
Carling, D.3
Hardie, D.G.4
-
52
-
-
0030755466
-
Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney
-
Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF, Hai T, Whelan J. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem. 1997;272:19943-19950.
-
(1997)
J Biol Chem
, vol.272
, pp. 19943-19950
-
-
Yin, T.1
Sandhu, G.2
Wolfgang, C.D.3
Burrier, A.4
Webb, R.L.5
Rigel, D.F.6
Hai, T.7
Whelan, J.8
-
53
-
-
0030036727
-
Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart: P38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion
-
Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart: p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res. 1996;79:162-173.
-
(1996)
Circ Res
, vol.79
, pp. 162-173
-
-
Bogoyevitch, M.A.1
Gillespie-Brown, J.2
Ketterman, A.J.3
Fuller, S.J.4
Ben-Levy, R.5
Ashworth, A.6
Marshall, C.J.7
Sugden, P.H.8
-
54
-
-
34249941195
-
A fundamental system of cellular energy homeostasis regulated by PGC-1alpha
-
Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, Spiegelman BM. A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci USA. 2007;104:7933-7938.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 7933-7938
-
-
Rohas, L.M.1
St-Pierre, J.2
Uldry, M.3
Jager, S.4
Handschin, C.5
Spiegelman, B.M.6
-
55
-
-
42049104604
-
Hungry for blood vessels: Linking metabolism and angiogenesis
-
Fraisl P, Baes M, Carmeliet P. Hungry for blood vessels: linking metabolism and angiogenesis. Dev Cell. 2008;14:313-314.
-
(2008)
Dev Cell
, vol.14
, pp. 313-314
-
-
Fraisl, P.1
Baes, M.2
Carmeliet, P.3
-
56
-
-
44849143016
-
Metabolism and therapeutic angiogenesis
-
Carmeliet P, Baes M. Metabolism and therapeutic angiogenesis. N Engl J Med. 2008;358:2511-2512.
-
(2008)
N Engl J Med
, vol.358
, pp. 2511-2512
-
-
Carmeliet, P.1
Baes, M.2
-
57
-
-
45549104823
-
Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors
-
Ao A, Wang H, Kamarajugadda S, Lu J. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci USA. 2008;105:7821-7826.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 7821-7826
-
-
Ao, A.1
Wang, H.2
Kamarajugadda, S.3
Lu, J.4
|