메뉴 건너뛰기




Volumn 98, Issue 2, 2010, Pages 321-329

Folding simulations of a de Novo designed protein with a βαβ fold

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77049109643     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2009.10.018     Document Type: Article
Times cited : (14)

References (66)
  • 1
    • 0032561237 scopus 로고    scopus 로고
    • Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution
    • Duan, Y., and P. A. Kollman. 1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 282:740-744.
    • (1998) Science , vol.282 , pp. 740-744
    • Duan, Y.1    Kollman, P.A.2
  • 3
    • 54849428346 scopus 로고    scopus 로고
    • The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier
    • Lei, H., X. Deng, ., Y. Duan. 2008. The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier. J. Chem. Phys. 129:155104.
    • (2008) J. Chem. Phys. , vol.129 , pp. 155104
    • Lei, H.1    Deng, X.2    Duan., Y.3
  • 4
    • 34249298006 scopus 로고    scopus 로고
    • Two-stage folding of HP-35 from ab initio simulations
    • Lei, H., and Y. Duan. 2007. Two-stage folding of HP-35 from ab initio simulations. J. Mol. Biol. 370:196-206.
    • (2007) J. Mol. Biol. , vol.370 , pp. 196-206
    • Lei, H.1    Duan, Y.2
  • 5
    • 33748248896 scopus 로고    scopus 로고
    • Using massively parallel simulation and Markovian models to study protein folding: Examining the dynamics of the villin headpiece
    • Jayachandran, G., V. Vishal, and V. S. Pande. 2006. Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece. J. Chem. Phys. 124:164902.
    • (2006) J. Chem. Phys. , vol.124 , pp. 164902
    • Jayachandran, G.1    Vishal, V.2    Pande, V.S.3
  • 6
    • 0036428782 scopus 로고    scopus 로고
    • Simulation of folding of a small a-helical protein in atomistic detail using worldwide-distributed computing
    • Zagrovic, B., C. D. Snow,., V. S. Pande. 2002. Simulation of folding of a small a-helical protein in atomistic detail using worldwide-distributed computing. J. Mol. Biol. 323:927-937.
    • (2002) J. Mol. Biol. , vol.323 , pp. 927-937
    • Zagrovic, B.1    Snow, C.D.2    Pande, V.S.3
  • 7
    • 34249807361 scopus 로고    scopus 로고
    • Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation
    • Lei, H., and Y. Duan. 2007. Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation. J. Phys. Chem. B. 111:5458-5463.
    • (2007) J. Phys. Chem. B. , vol.111 , pp. 5458-5463
    • Lei, H.1    Duan, Y.2
  • 8
    • 0345724787 scopus 로고    scopus 로고
    • Ab initio folding of helix bundle proteins using molecular dynamics simulations
    • Jang, S., E. Kim, ., Y. Pak. 2003. Ab initio folding of helix bundle proteins using molecular dynamics simulations. J. Am. Chem. Soc. 125:14841-14846.
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 14841-14846
    • Jang, S.1    Kim, E.2    Pak, Y.3
  • 9
    • 0344304436 scopus 로고    scopus 로고
    • Atomically detailed folding simulation of the B domain of staphylococcal protein A from random structures
    • Vila, J. A., D. R. Ripoll, and H. A. Scheraga. 2003. Atomically detailed folding simulation of the B domain of staphylococcal protein A from random structures. Proc. Natl. Acad. Sci. USA. 100:14812-14816.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 14812-14816
    • Vila, J.A.1    Ripoll, D.R.2    Scheraga, H.A.3
  • 10
    • 47249119770 scopus 로고    scopus 로고
    • Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations
    • Lei, H., C. Wu, ., Y. Duan. 2008. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations. J. Chem. Phys. 128:235105.
    • (2008) J. Chem. Phys. , vol.128 , pp. 235105
    • Lei, H.1    Wu, C.2    Duan, Y.3
  • 11
    • 33947723327 scopus 로고    scopus 로고
    • Influence of temperature, friction, and random forces on folding of the B-domain of staphylococcal protein A: All-atom molecular dynamics in implicit solvent
    • Jagielska, A., and H. A. Scheraga. 2007. Influence of temperature, friction, and random forces on folding of the B-domain of staphylococcal protein A: all-atom molecular dynamics in implicit solvent. J. Comput. Chem. 28:1068-1082.
    • (2007) J. Comput. Chem. , vol.28 , pp. 1068-1082
    • Jagielska, A.1    Scheraga, H.A.2
  • 12
    • 0037470691 scopus 로고    scopus 로고
    • Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution
    • Chowdhury, S., M. C. Lee, ., Y. Duan. 2003. Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution. J. Mol. Biol. 327:711-717.
    • (2003) J. Mol. Biol. , vol.327 , pp. 711-717
    • Chowdhury, S.1    Lee, M.C.2    Duan, Y.3
  • 13
    • 33847254549 scopus 로고    scopus 로고
    • Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: On the structure and possible role of internal water
    • Paschek, D., H. Nymeyer, and A. E. García. 2007. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water. J. Struct. Biol. 157:524-533.
    • (2007) J. Struct. Biol. , vol.157 , pp. 524-533
    • Paschek, D.1    Nymeyer, H.2    García, A.E.3
  • 14
    • 0344824394 scopus 로고    scopus 로고
    • Trp-cage: Folding free energy landscape in explicit water
    • Zhou, R. 2003. Trp-cage: folding free energy landscape in explicit water. Proc. Natl. Acad. Sci. USA. 100:13280-13285.
    • (2003) Proc. Natl. Acad. Sci. USA. , vol.100 , pp. 13280-13285
    • Zhou, R.1
  • 15
    • 0029772552 scopus 로고    scopus 로고
    • Emergence of preferred structures in a simple model of protein folding
    • Li, H., R. Helling, ., N. Wingreen. 1996. Emergence of preferred structures in a simple model of protein folding. Science. 273:666-669.
    • (1996) Science , vol.273 , pp. 666-669
    • Li, H.1    Helling, R.2    Wingreen, N.3
  • 18
    • 0345306764 scopus 로고    scopus 로고
    • Design of a novel globular protein fold with atomic-level accuracy
    • Kuhlman, B., G. Dantas, ., D. Baker. 2003. Design of a novel globular protein fold with atomic-level accuracy. Science. 302: 1364-1368.
    • (2003) Science , vol.302 , pp. 1364-1368
    • Kuhlman, B.1    Dantas, G.2    Baker, D.3
  • 19
    • 0030793767 scopus 로고    scopus 로고
    • De novo protein design: Fully automated sequence selection
    • Dahiyat, B. I., and S. L. Mayo. 1997. De novo protein design: fully automated sequence selection. Science. 278:82-87.
    • (1997) Science , vol.278 , pp. 82-87
    • Dahiyat, B.I.1    Mayo, S.L.2
  • 20
    • 0036385840 scopus 로고    scopus 로고
    • Computational de novo design, and characterization of an A(2)B(2) diiron protein
    • Summa, C. M., M. M. Rosenblatt, ., W. F. DeGrado. 2002. Computational de novo design, and characterization of an A(2)B(2) diiron protein. J. Mol. Biol. 321:923-938.
    • (2002) J. Mol. Biol. , vol.321 , pp. 923-938
    • Summa, C.M.1    Rosenblatt, M.M.2    Degrado, W.F.3
  • 21
    • 33846708445 scopus 로고    scopus 로고
    • The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection
    • Watters, A. L., P. Deka, ., D. Baker. 2007. The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection. Cell. 128:613-624.
    • (2007) Cell , vol.128 , pp. 613-624
    • Watters, A.L.1    Deka, P.2    Baker, D.3
  • 22
    • 61549141060 scopus 로고    scopus 로고
    • Native topology of the designed protein Top7 is not conducive to cooperative folding
    • Zhang, Z., and H. S. Chan. 2009. Native topology of the designed protein Top7 is not conducive to cooperative folding. Biophys. J. 96:L25-L27.
    • (2009) Biophys. J. , vol.96
    • Zhang, Z.1    Chan, H.S.2
  • 23
  • 24
    • 0242663237 scopus 로고    scopus 로고
    • A point-charge force field for molecular mechanics simulations of proteins based on condensedphase quantum mechanical calculations
    • Duan, Y., C. Wu, ., P. Kollman. 2003. A point-charge force field for molecular mechanics simulations of proteins based on condensedphase quantum mechanical calculations. J. Comput. Chem. 24: 1999-2012.
    • (2003) J. Comput. Chem. , vol.24 , pp. 1999-2012
    • Duan, Y.1    Wu, C.2    Kollman, P.3
  • 25
    • 33646940952 scopus 로고
    • Numerical integration of Cartesian equations of motion of a system with constraints: Molecular dynamics of N-alkanes
    • Ryckaert, J. P., G. Ciccotti, and H. J. C. Berendsen. 1977. Numerical integration of Cartesian equations of motion of a system with constraints: molecular dynamics of N-alkanes. J. Comput. Phys. 23:327-341.
    • (1977) J. Comput. Phys. , vol.23 , pp. 327-341
    • Ryckaert, J.P.1    Ciccotti, G.2    Berendsen, H.J.C.3
  • 26
    • 84912079256 scopus 로고
    • Rapid approximation to molecular surface area via the use of Boolean logic and look-up tables
    • Legrand, S. M., and K. M. Merz. 1993. Rapid approximation to molecular surface area via the use of Boolean logic and look-up tables. J. Comput. Chem. 14:349-352.
    • (1993) J. Comput. Chem. , vol.14 , pp. 349-352
    • Legrand, S.M.1    Merz, K.M.2
  • 27
    • 0020972782 scopus 로고
    • Theoretical studies of protein folding
    • Go, N. 1983. Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12:183-210.
    • (1983) Annu. Rev. Biophys. Bioeng. , vol.12 , pp. 183-210
    • Go, N.1
  • 28
    • 0034685604 scopus 로고    scopus 로고
    • Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins
    • Clementi, C., H. Nymeyer, and J. N. Onuchic. 2000. Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298:937-953.
    • (2000) J. Mol. Biol. , vol.298 , pp. 937-953
    • Clementi, C.1    Nymeyer, H.2    Onuchic, J.N.3
  • 29
    • 27744500841 scopus 로고    scopus 로고
    • Solvation and desolvation effects in protein folding: Native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions
    • Liu, Z. R., and H. S. Chan. 2005. Solvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions. Phys. Biol. 2:S75-S85.
    • (2005) Phys. Biol. , vol.2
    • Liu, Z.R.1    Chan, H.S.2
  • 30
    • 65649104671 scopus 로고    scopus 로고
    • Interplaying roles of native topology and chain length in marginally cooperative and noncooperative folding of small protein fragments
    • Badasyan, A., Z. Liu, and H. S. Chan. 2009. Interplaying roles of native topology and chain length in marginally cooperative and noncooperative folding of small protein fragments. Int. J. Quantum Chem. 109:3482-3499.
    • (2009) Int. J. Quantum Chem. , vol.109 , pp. 3482-3499
    • Badasyan, A.1    Liu, Z.2    Chan, H.S.3
  • 31
    • 1842479952 scopus 로고    scopus 로고
    • Exploring protein native states and large-scale conformational changes with a modified generalized Born model
    • Onufriev, A., D. Bashford, and D. A. Case. 2004. Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins. 55:383-394.
    • (2004) Proteins , vol.55 , pp. 383-394
    • Onufriev, A.1    Bashford, D.2    Case, D.A.3
  • 32
    • 72449198627 scopus 로고    scopus 로고
    • Dynamic folding pathway models of the villin headpiece subdomain (HP-36) structure
    • Lee, I. H., S. Y. Kim, and J. Lee. 2009. Dynamic folding pathway models of the villin headpiece subdomain (HP-36) structure. J. Comput. Chem. 31:57-65.
    • (2009) J. Comput. Chem. , vol.31 , pp. 57-65
    • Lee, I.H.1    Kim, S.Y.2    Lee, J.3
  • 33
    • 49349096539 scopus 로고    scopus 로고
    • Folding kinetics of a naturally occurring helical peptide: Implication of the folding speed limit of helical proteins
    • Mukherjee, S., P. Chowdhury, ., F. Gai. 2008. Folding kinetics of a naturally occurring helical peptide: implication of the folding speed limit of helical proteins. J. Phys. Chem. B. 112:9146-9150.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 9146-9150
    • Mukherjee, S.1    Chowdhury, P.2    Gai, F.3
  • 34
    • 1842298212 scopus 로고    scopus 로고
    • From Levinthal to pathways to funnels
    • Dill, K. A., and H. S. Chan. 1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10-19.
    • (1997) Nat. Struct. Biol. , vol.4 , pp. 10-19
    • Dill, K.A.1    Chan, H.S.2
  • 35
    • 0028947257 scopus 로고
    • Funnels, pathways, and the energy landscape of protein folding: A synthesis
    • Bryngelson, J. D., J. N. Onuchic, ., P. G. Wolynes. 1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 21:167-195.
    • (1995) Proteins , vol.21 , pp. 167-195
    • Bryngelson, J.D.1    Onuchic, J.N.2    Wolynes, P.G.3
  • 36
    • 0017842051 scopus 로고
    • Studies on protein folding, unfolding, and fluctuations by computer simulation. 2. 3-Dimensional lattice model of lysozyme
    • Ueda, Y., H. Taketomi, and N. Go. 1978. Studies on protein folding, unfolding, and fluctuations by computer simulation. 2. 3-Dimensional lattice model of lysozyme. Biopolymers. 17:1531-1548.
    • (1978) Biopolymers , vol.17 , pp. 1531-1548
    • Ueda, Y.1    Taketomi, H.2    Go, N.3
  • 37
    • 0035850732 scopus 로고    scopus 로고
    • Roles of native topology and chainlength scaling in protein folding: A simulation study with a Go-like model
    • Koga, N., and S. Takada. 2001. Roles of native topology and chainlength scaling in protein folding: a simulation study with a Go-like model. J. Mol. Biol. 313:171-180.
    • (2001) J. Mol. Biol. , vol.313 , pp. 171-180
    • Koga, N.1    Takada, S.2
  • 38
    • 54949099933 scopus 로고    scopus 로고
    • Probing possible downhill folding: Native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues
    • Badasyan, A., Z. Liu, and H. S. Chan. 2008. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. J. Mol. Biol. 384:512-530.
    • (2008) J. Mol. Biol. , vol.384 , pp. 512-530
    • Badasyan, A.1    Liu, Z.2    Chan, H.S.3
  • 39
    • 0037459035 scopus 로고    scopus 로고
    • Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: How adequate is native-centric topological modeling?
    • Kaya, H., and H. S. Chan. 2003. Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: how adequate is native-centric topological modeling? J. Mol. Biol. 326:911-931.
    • (2003) J. Mol. Biol. , vol.326 , pp. 911-931
    • Kaya, H.1    Chan, H.S.2
  • 40
    • 38349117215 scopus 로고    scopus 로고
    • Origins of barriers and barrierless folding in BBL
    • Cho, S. S., P. Weinkam, and P. G. Wolynes. 2008. Origins of barriers and barrierless folding in BBL. Proc. Natl. Acad. Sci. USA. 105: 118-123.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 118-123
    • Cho, S.S.1    Weinkam, P.2    Wolynes, P.G.3
  • 41
    • 65649148275 scopus 로고    scopus 로고
    • Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins
    • Ferguson, A., Z. Liu, and H. S. Chan. 2009. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. J. Mol. Biol. 389:619-636.
    • (2009) J. Mol. Biol. , vol.389 , pp. 619-636
    • Ferguson, A.1    Liu, Z.2    Chan, H.S.3
  • 42
    • 42949161558 scopus 로고    scopus 로고
    • Binding-induced folding of a natively unstructured transcription factor
    • Turjanski, A. G., J. S. Gutkind,., G. Hummer. 2008. Binding-induced folding of a natively unstructured transcription factor. PLOS Comput. Biol. 4:e1000060.
    • (2008) PLOS Comput. Biol. , vol.4
    • Turjanski, A.G.1    Gutkind, J.S.2    Hummer, G.3
  • 43
    • 70350012289 scopus 로고    scopus 로고
    • Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: A critical assessment of the "fly-casting" mechanism
    • Huang, Y., and Z. Liu. 2009. Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: a critical assessment of the "fly-casting" mechanism. J. Mol. Biol. 393:1143-1159.
    • (2009) J. Mol. Biol. , vol.393 , pp. 1143-1159
    • Huang, Y.1    Liu, Z.2
  • 44
    • 0034604105 scopus 로고    scopus 로고
    • A surprising simplicity to protein folding
    • Baker, D. 2000. A surprising simplicity to protein folding. Nature. 405:39-42.
    • (2000) Nature. , vol.405 , pp. 39-42
    • Baker, D.1
  • 45
    • 0032502839 scopus 로고    scopus 로고
    • Contact order, transition state placement and the refolding rates of single domain proteins
    • Plaxco, K. W., K. T. Simons, and D. Baker. 1998. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277:985-994.
    • (1998) J. Mol. Biol. , vol.277 , pp. 985-994
    • Plaxco, K.W.1    Simons, K.T.2    Baker, D.3
  • 46
    • 33749027499 scopus 로고    scopus 로고
    • Criteria for downhill protein folding: Calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity
    • Knott, M., and H. S. Chan. 2006. Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins. 65:373-391.
    • (2006) Proteins , vol.65 , pp. 373-391
    • Knott, M.1    Chan, H.S.2
  • 47
    • 0034284060 scopus 로고    scopus 로고
    • Polymer principles of protein calorimetric two-state cooperativity
    • Kaya, H., and H. S. Chan. 2000. Polymer principles of protein calorimetric two-state cooperativity. Proteins. 40:637-661.
    • (2000) Proteins , vol.40 , pp. 637-661
    • Kaya, H.1    Chan, H.S.2
  • 48
    • 33746102627 scopus 로고    scopus 로고
    • Atom-by-atom analysis of global downhill protein folding
    • Sadqi, M., D. Fushman, and V. Muñoz. 2006. Atom-by-atom analysis of global downhill protein folding. Nature. 442:317-321.
    • (2006) Nature , vol.442 , pp. 317-321
    • Sadqi, M.1    Fushman, D.2    Muñoz, V.3
  • 49
    • 23944522022 scopus 로고    scopus 로고
    • Downhill protein folding: Evolution meets physics
    • Gruebele, M. 2005. Downhill protein folding: evolution meets physics. C. R. Biol. 328:701-712.
    • (2005) C. R. Biol. , vol.328 , pp. 701-712
    • Gruebele, M.1
  • 50
    • 40649128566 scopus 로고    scopus 로고
    • An experimental survey of the transition between two-state and downhill protein folding scenarios
    • Liu, F., D. G. Du,., M. Gruebele. 2008. An experimental survey of the transition between two-state and downhill protein folding scenarios. Proc. Natl. Acad. Sci. USA. 105:2369-2374.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 2369-2374
    • Liu, F.1    Du, D.G.2    Gruebele, M.3
  • 51
    • 0037073934 scopus 로고    scopus 로고
    • Experimental identification of downhill protein folding
    • Garcia-Mira, M. M., M. Sadqi,., V. Muñoz. 2002. Experimental identification of downhill protein folding. Science. 298:2191-2195.
    • (2002) Science , vol.298 , pp. 2191-2195
    • Garcia-Mira, M.M.1    Sadqi, M.2    Muñoz, V.3
  • 52
    • 3142782241 scopus 로고    scopus 로고
    • Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates
    • Chavez, L. L., J. N. Onuchic, and C. Clementi. 2004. Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates. J. Am. Chem. Soc. 126:8426-8432.
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 8426-8432
    • Chavez, L.L.1    Onuchic, J.N.2    Clementi, C.3
  • 53
    • 0026345750 scopus 로고
    • Folding of chymotrypsin inhibitor-2. 1. Evidence for a 2-state transition
    • Jackson, S. E., and A. R. Fersht. 1991. Folding of chymotrypsin inhibitor-2. 1. Evidence for a 2-state transition. Biochemistry. 30:10428-10435.
    • (1991) Biochemistry , Issue.30 , pp. 10428-10435
    • Jackson, S.E.1    Fersht, A.R.2
  • 54
    • 0030984109 scopus 로고    scopus 로고
    • Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability
    • Scalley, M. L., and D. Baker. 1997. Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability. Proc. Natl. Acad. Sci. USA. 94:10636-10640.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 10636-10640
    • Scalley, M.L.1    Baker, D.2
  • 55
    • 0033527587 scopus 로고    scopus 로고
    • Submillisecond folding of the peripheral subunit-binding domain
    • Spector, S., and D. P. Raleigh. 1999. Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol. 293:763-768.
    • (1999) J. Mol. Biol. , vol.293 , pp. 763-768
    • Spector, S.1    Raleigh, D.P.2
  • 56
    • 0037453348 scopus 로고    scopus 로고
    • A thermodynamic and kinetic analysis of the folding pathway of an SH3 domain entropically stabilised by a redesigned hydrophobic core
    • Cobos, E. S., V. V. Filimonov, ., J. C. Martínez. 2003. A thermodynamic and kinetic analysis of the folding pathway of an SH3 domain entropically stabilised by a redesigned hydrophobic core. J. Mol. Biol. 328:221-233.
    • (2003) J. Mol. Biol. , vol.328 , pp. 221-233
    • Cobos, E.S.1    Filimonov, V.V.2    Martínez, J.C.3
  • 57
    • 0037470575 scopus 로고    scopus 로고
    • Rapid cooperative two-state folding of a miniature α-β Protein and design of a thermostable variant
    • Horng, J. C., V. Moroz, and D. P. Raleigh. 2003. Rapid cooperative two-state folding of a miniature α-β protein and design of a thermostable variant. J. Mol. Biol. 326:1261-1270.
    • (2003) J. Mol. Biol. , vol.326 , pp. 1261-1270
    • Horng, J.C.1    Moroz, V.2    Raleigh, D.P.3
  • 58
    • 25144462746 scopus 로고    scopus 로고
    • Ultra-fast barrierlimited folding in the peripheral subunit-binding domain family
    • Ferguson, N., T. D. Sharpe, ., A. R. Fersht. 2005. Ultra-fast barrierlimited folding in the peripheral subunit-binding domain family. J. Mol. Biol. 353:427-446.
    • (2005) J. Mol. Biol. , vol.353 , pp. 427-446
    • Ferguson, N.1    Sharpe, T.D.2    Fersht, A.R.3
  • 59
    • 33645294148 scopus 로고    scopus 로고
    • Conformational entropic barriers in topology-dependent protein folding: Perspectives from a simple nativecentric polymer model
    • Wallin, S., and H. S. Chan. 2006. Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple nativecentric polymer model. J. Phys. Condens. Matter. 18:S307-S328.
    • (2006) J. Phys. Condens. Matter. , vol.18
    • Wallin, S.1    Chan, H.S.2
  • 60
    • 0346734133 scopus 로고    scopus 로고
    • Ultrafast folding of α3D: A de novo designed three-helix bundle protein
    • Zhu, Y., D. O. Alonso, ., F. Gai. 2003. Ultrafast folding of α3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA. 100:15486-15491.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 15486-15491
    • Zhu, Y.1    Alonso, D.O.2    Gai, F.3
  • 61
    • 63149100950 scopus 로고    scopus 로고
    • A designed protein as experimental model of primordial folding
    • Sadqi, M., E. de Alba, ., V. Muñoz. 2009. A designed protein as experimental model of primordial folding. Proc. Natl. Acad. Sci. USA. 106:4127-4132.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 4127-4132
    • Sadqi, M.1    De Alba, E.2    Muñoz, V.3
  • 63
    • 0030979740 scopus 로고    scopus 로고
    • Folding funnels and energy landscapes of larger proteins within the capillarity approximation
    • Wolynes, P. G. 1997. Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proc. Natl. Acad. Sci. USA. 94:6170-6175.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 6170-6175
    • Wolynes, P.G.1
  • 64
    • 0347123330 scopus 로고    scopus 로고
    • Thermal denaturation and folding rates of single domain proteins: Size matters
    • Li, M. S., D. K. Klimov, and D. Thirumalai. 2004. Thermal denaturation and folding rates of single domain proteins: size matters. Polymer (Guildf.). 45:573-579.
    • (2004) Polymer (Guildf.) , vol.45 , pp. 573-579
    • Li, M.S.1    Klimov, D.K.2    Thirumalai, D.3
  • 65
    • 12944309313 scopus 로고    scopus 로고
    • Scaling of folding times with protein size
    • Naganathan, A. N., and V. Muñoz. 2005. Scaling of folding times with protein size. J. Am. Chem. Soc. 127:480-481.
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 480-481
    • Naganathan, A.N.1    Muñoz, V.2
  • 66
    • 4143101125 scopus 로고    scopus 로고
    • Guiding the search for a protein's maximum rate of folding
    • Zhu, Y., X. Fu, T. Wang, A. Tamura, S. Takada., 2004. Guiding the search for a protein's maximum rate of folding. Chem. Phys. 307: 99-109.
    • (2004) Chem. Phys. , vol.307 , pp. 99-109
    • Zhu, Y.1    Fu, X.2    Wang, T.3    Tamura, A.4    Takada, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.