-
1
-
-
0032561237
-
Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution
-
Duan, Y., and P. A. Kollman. 1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 282:740-744.
-
(1998)
Science
, vol.282
, pp. 740-744
-
-
Duan, Y.1
Kollman, P.A.2
-
3
-
-
54849428346
-
The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier
-
Lei, H., X. Deng, ., Y. Duan. 2008. The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier. J. Chem. Phys. 129:155104.
-
(2008)
J. Chem. Phys.
, vol.129
, pp. 155104
-
-
Lei, H.1
Deng, X.2
Duan., Y.3
-
4
-
-
34249298006
-
Two-stage folding of HP-35 from ab initio simulations
-
Lei, H., and Y. Duan. 2007. Two-stage folding of HP-35 from ab initio simulations. J. Mol. Biol. 370:196-206.
-
(2007)
J. Mol. Biol.
, vol.370
, pp. 196-206
-
-
Lei, H.1
Duan, Y.2
-
5
-
-
33748248896
-
Using massively parallel simulation and Markovian models to study protein folding: Examining the dynamics of the villin headpiece
-
Jayachandran, G., V. Vishal, and V. S. Pande. 2006. Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece. J. Chem. Phys. 124:164902.
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 164902
-
-
Jayachandran, G.1
Vishal, V.2
Pande, V.S.3
-
6
-
-
0036428782
-
Simulation of folding of a small a-helical protein in atomistic detail using worldwide-distributed computing
-
Zagrovic, B., C. D. Snow,., V. S. Pande. 2002. Simulation of folding of a small a-helical protein in atomistic detail using worldwide-distributed computing. J. Mol. Biol. 323:927-937.
-
(2002)
J. Mol. Biol.
, vol.323
, pp. 927-937
-
-
Zagrovic, B.1
Snow, C.D.2
Pande, V.S.3
-
7
-
-
34249807361
-
Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation
-
Lei, H., and Y. Duan. 2007. Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation. J. Phys. Chem. B. 111:5458-5463.
-
(2007)
J. Phys. Chem. B.
, vol.111
, pp. 5458-5463
-
-
Lei, H.1
Duan, Y.2
-
8
-
-
0345724787
-
Ab initio folding of helix bundle proteins using molecular dynamics simulations
-
Jang, S., E. Kim, ., Y. Pak. 2003. Ab initio folding of helix bundle proteins using molecular dynamics simulations. J. Am. Chem. Soc. 125:14841-14846.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 14841-14846
-
-
Jang, S.1
Kim, E.2
Pak, Y.3
-
9
-
-
0344304436
-
Atomically detailed folding simulation of the B domain of staphylococcal protein A from random structures
-
Vila, J. A., D. R. Ripoll, and H. A. Scheraga. 2003. Atomically detailed folding simulation of the B domain of staphylococcal protein A from random structures. Proc. Natl. Acad. Sci. USA. 100:14812-14816.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 14812-14816
-
-
Vila, J.A.1
Ripoll, D.R.2
Scheraga, H.A.3
-
10
-
-
47249119770
-
Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations
-
Lei, H., C. Wu, ., Y. Duan. 2008. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations. J. Chem. Phys. 128:235105.
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 235105
-
-
Lei, H.1
Wu, C.2
Duan, Y.3
-
11
-
-
33947723327
-
Influence of temperature, friction, and random forces on folding of the B-domain of staphylococcal protein A: All-atom molecular dynamics in implicit solvent
-
Jagielska, A., and H. A. Scheraga. 2007. Influence of temperature, friction, and random forces on folding of the B-domain of staphylococcal protein A: all-atom molecular dynamics in implicit solvent. J. Comput. Chem. 28:1068-1082.
-
(2007)
J. Comput. Chem.
, vol.28
, pp. 1068-1082
-
-
Jagielska, A.1
Scheraga, H.A.2
-
12
-
-
0037470691
-
Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution
-
Chowdhury, S., M. C. Lee, ., Y. Duan. 2003. Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution. J. Mol. Biol. 327:711-717.
-
(2003)
J. Mol. Biol.
, vol.327
, pp. 711-717
-
-
Chowdhury, S.1
Lee, M.C.2
Duan, Y.3
-
13
-
-
33847254549
-
Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: On the structure and possible role of internal water
-
Paschek, D., H. Nymeyer, and A. E. García. 2007. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water. J. Struct. Biol. 157:524-533.
-
(2007)
J. Struct. Biol.
, vol.157
, pp. 524-533
-
-
Paschek, D.1
Nymeyer, H.2
García, A.E.3
-
14
-
-
0344824394
-
Trp-cage: Folding free energy landscape in explicit water
-
Zhou, R. 2003. Trp-cage: folding free energy landscape in explicit water. Proc. Natl. Acad. Sci. USA. 100:13280-13285.
-
(2003)
Proc. Natl. Acad. Sci. USA.
, vol.100
, pp. 13280-13285
-
-
Zhou, R.1
-
15
-
-
0029772552
-
Emergence of preferred structures in a simple model of protein folding
-
Li, H., R. Helling, ., N. Wingreen. 1996. Emergence of preferred structures in a simple model of protein folding. Science. 273:666-669.
-
(1996)
Science
, vol.273
, pp. 666-669
-
-
Li, H.1
Helling, R.2
Wingreen, N.3
-
18
-
-
0345306764
-
Design of a novel globular protein fold with atomic-level accuracy
-
Kuhlman, B., G. Dantas, ., D. Baker. 2003. Design of a novel globular protein fold with atomic-level accuracy. Science. 302: 1364-1368.
-
(2003)
Science
, vol.302
, pp. 1364-1368
-
-
Kuhlman, B.1
Dantas, G.2
Baker, D.3
-
19
-
-
0030793767
-
De novo protein design: Fully automated sequence selection
-
Dahiyat, B. I., and S. L. Mayo. 1997. De novo protein design: fully automated sequence selection. Science. 278:82-87.
-
(1997)
Science
, vol.278
, pp. 82-87
-
-
Dahiyat, B.I.1
Mayo, S.L.2
-
20
-
-
0036385840
-
Computational de novo design, and characterization of an A(2)B(2) diiron protein
-
Summa, C. M., M. M. Rosenblatt, ., W. F. DeGrado. 2002. Computational de novo design, and characterization of an A(2)B(2) diiron protein. J. Mol. Biol. 321:923-938.
-
(2002)
J. Mol. Biol.
, vol.321
, pp. 923-938
-
-
Summa, C.M.1
Rosenblatt, M.M.2
Degrado, W.F.3
-
21
-
-
33846708445
-
The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection
-
Watters, A. L., P. Deka, ., D. Baker. 2007. The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection. Cell. 128:613-624.
-
(2007)
Cell
, vol.128
, pp. 613-624
-
-
Watters, A.L.1
Deka, P.2
Baker, D.3
-
22
-
-
61549141060
-
Native topology of the designed protein Top7 is not conducive to cooperative folding
-
Zhang, Z., and H. S. Chan. 2009. Native topology of the designed protein Top7 is not conducive to cooperative folding. Biophys. J. 96:L25-L27.
-
(2009)
Biophys. J.
, vol.96
-
-
Zhang, Z.1
Chan, H.S.2
-
23
-
-
23444454552
-
The Amber biomolecular simulation programs
-
Case, D. A., T. E. Cheatham, 3rd, ., R. J. Woods. 2005. The Amber biomolecular simulation programs. J. Comput. Chem. 26:1668-1688.
-
(2005)
J. Comput. Chem.
, vol.26
, pp. 1668-1688
-
-
Case, D.A.1
Cheatham Iii, T.E.2
Woods, R.J.3
-
24
-
-
0242663237
-
A point-charge force field for molecular mechanics simulations of proteins based on condensedphase quantum mechanical calculations
-
Duan, Y., C. Wu, ., P. Kollman. 2003. A point-charge force field for molecular mechanics simulations of proteins based on condensedphase quantum mechanical calculations. J. Comput. Chem. 24: 1999-2012.
-
(2003)
J. Comput. Chem.
, vol.24
, pp. 1999-2012
-
-
Duan, Y.1
Wu, C.2
Kollman, P.3
-
25
-
-
33646940952
-
Numerical integration of Cartesian equations of motion of a system with constraints: Molecular dynamics of N-alkanes
-
Ryckaert, J. P., G. Ciccotti, and H. J. C. Berendsen. 1977. Numerical integration of Cartesian equations of motion of a system with constraints: molecular dynamics of N-alkanes. J. Comput. Phys. 23:327-341.
-
(1977)
J. Comput. Phys.
, vol.23
, pp. 327-341
-
-
Ryckaert, J.P.1
Ciccotti, G.2
Berendsen, H.J.C.3
-
26
-
-
84912079256
-
Rapid approximation to molecular surface area via the use of Boolean logic and look-up tables
-
Legrand, S. M., and K. M. Merz. 1993. Rapid approximation to molecular surface area via the use of Boolean logic and look-up tables. J. Comput. Chem. 14:349-352.
-
(1993)
J. Comput. Chem.
, vol.14
, pp. 349-352
-
-
Legrand, S.M.1
Merz, K.M.2
-
27
-
-
0020972782
-
Theoretical studies of protein folding
-
Go, N. 1983. Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12:183-210.
-
(1983)
Annu. Rev. Biophys. Bioeng.
, vol.12
, pp. 183-210
-
-
Go, N.1
-
28
-
-
0034685604
-
Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins
-
Clementi, C., H. Nymeyer, and J. N. Onuchic. 2000. Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298:937-953.
-
(2000)
J. Mol. Biol.
, vol.298
, pp. 937-953
-
-
Clementi, C.1
Nymeyer, H.2
Onuchic, J.N.3
-
29
-
-
27744500841
-
Solvation and desolvation effects in protein folding: Native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions
-
Liu, Z. R., and H. S. Chan. 2005. Solvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions. Phys. Biol. 2:S75-S85.
-
(2005)
Phys. Biol.
, vol.2
-
-
Liu, Z.R.1
Chan, H.S.2
-
30
-
-
65649104671
-
Interplaying roles of native topology and chain length in marginally cooperative and noncooperative folding of small protein fragments
-
Badasyan, A., Z. Liu, and H. S. Chan. 2009. Interplaying roles of native topology and chain length in marginally cooperative and noncooperative folding of small protein fragments. Int. J. Quantum Chem. 109:3482-3499.
-
(2009)
Int. J. Quantum Chem.
, vol.109
, pp. 3482-3499
-
-
Badasyan, A.1
Liu, Z.2
Chan, H.S.3
-
31
-
-
1842479952
-
Exploring protein native states and large-scale conformational changes with a modified generalized Born model
-
Onufriev, A., D. Bashford, and D. A. Case. 2004. Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins. 55:383-394.
-
(2004)
Proteins
, vol.55
, pp. 383-394
-
-
Onufriev, A.1
Bashford, D.2
Case, D.A.3
-
32
-
-
72449198627
-
Dynamic folding pathway models of the villin headpiece subdomain (HP-36) structure
-
Lee, I. H., S. Y. Kim, and J. Lee. 2009. Dynamic folding pathway models of the villin headpiece subdomain (HP-36) structure. J. Comput. Chem. 31:57-65.
-
(2009)
J. Comput. Chem.
, vol.31
, pp. 57-65
-
-
Lee, I.H.1
Kim, S.Y.2
Lee, J.3
-
33
-
-
49349096539
-
Folding kinetics of a naturally occurring helical peptide: Implication of the folding speed limit of helical proteins
-
Mukherjee, S., P. Chowdhury, ., F. Gai. 2008. Folding kinetics of a naturally occurring helical peptide: implication of the folding speed limit of helical proteins. J. Phys. Chem. B. 112:9146-9150.
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 9146-9150
-
-
Mukherjee, S.1
Chowdhury, P.2
Gai, F.3
-
34
-
-
1842298212
-
From Levinthal to pathways to funnels
-
Dill, K. A., and H. S. Chan. 1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10-19.
-
(1997)
Nat. Struct. Biol.
, vol.4
, pp. 10-19
-
-
Dill, K.A.1
Chan, H.S.2
-
35
-
-
0028947257
-
Funnels, pathways, and the energy landscape of protein folding: A synthesis
-
Bryngelson, J. D., J. N. Onuchic, ., P. G. Wolynes. 1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 21:167-195.
-
(1995)
Proteins
, vol.21
, pp. 167-195
-
-
Bryngelson, J.D.1
Onuchic, J.N.2
Wolynes, P.G.3
-
36
-
-
0017842051
-
Studies on protein folding, unfolding, and fluctuations by computer simulation. 2. 3-Dimensional lattice model of lysozyme
-
Ueda, Y., H. Taketomi, and N. Go. 1978. Studies on protein folding, unfolding, and fluctuations by computer simulation. 2. 3-Dimensional lattice model of lysozyme. Biopolymers. 17:1531-1548.
-
(1978)
Biopolymers
, vol.17
, pp. 1531-1548
-
-
Ueda, Y.1
Taketomi, H.2
Go, N.3
-
37
-
-
0035850732
-
Roles of native topology and chainlength scaling in protein folding: A simulation study with a Go-like model
-
Koga, N., and S. Takada. 2001. Roles of native topology and chainlength scaling in protein folding: a simulation study with a Go-like model. J. Mol. Biol. 313:171-180.
-
(2001)
J. Mol. Biol.
, vol.313
, pp. 171-180
-
-
Koga, N.1
Takada, S.2
-
38
-
-
54949099933
-
Probing possible downhill folding: Native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues
-
Badasyan, A., Z. Liu, and H. S. Chan. 2008. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. J. Mol. Biol. 384:512-530.
-
(2008)
J. Mol. Biol.
, vol.384
, pp. 512-530
-
-
Badasyan, A.1
Liu, Z.2
Chan, H.S.3
-
39
-
-
0037459035
-
Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: How adequate is native-centric topological modeling?
-
Kaya, H., and H. S. Chan. 2003. Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: how adequate is native-centric topological modeling? J. Mol. Biol. 326:911-931.
-
(2003)
J. Mol. Biol.
, vol.326
, pp. 911-931
-
-
Kaya, H.1
Chan, H.S.2
-
41
-
-
65649148275
-
Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins
-
Ferguson, A., Z. Liu, and H. S. Chan. 2009. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. J. Mol. Biol. 389:619-636.
-
(2009)
J. Mol. Biol.
, vol.389
, pp. 619-636
-
-
Ferguson, A.1
Liu, Z.2
Chan, H.S.3
-
42
-
-
42949161558
-
Binding-induced folding of a natively unstructured transcription factor
-
Turjanski, A. G., J. S. Gutkind,., G. Hummer. 2008. Binding-induced folding of a natively unstructured transcription factor. PLOS Comput. Biol. 4:e1000060.
-
(2008)
PLOS Comput. Biol.
, vol.4
-
-
Turjanski, A.G.1
Gutkind, J.S.2
Hummer, G.3
-
43
-
-
70350012289
-
Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: A critical assessment of the "fly-casting" mechanism
-
Huang, Y., and Z. Liu. 2009. Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: a critical assessment of the "fly-casting" mechanism. J. Mol. Biol. 393:1143-1159.
-
(2009)
J. Mol. Biol.
, vol.393
, pp. 1143-1159
-
-
Huang, Y.1
Liu, Z.2
-
44
-
-
0034604105
-
A surprising simplicity to protein folding
-
Baker, D. 2000. A surprising simplicity to protein folding. Nature. 405:39-42.
-
(2000)
Nature.
, vol.405
, pp. 39-42
-
-
Baker, D.1
-
45
-
-
0032502839
-
Contact order, transition state placement and the refolding rates of single domain proteins
-
Plaxco, K. W., K. T. Simons, and D. Baker. 1998. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277:985-994.
-
(1998)
J. Mol. Biol.
, vol.277
, pp. 985-994
-
-
Plaxco, K.W.1
Simons, K.T.2
Baker, D.3
-
46
-
-
33749027499
-
Criteria for downhill protein folding: Calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity
-
Knott, M., and H. S. Chan. 2006. Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins. 65:373-391.
-
(2006)
Proteins
, vol.65
, pp. 373-391
-
-
Knott, M.1
Chan, H.S.2
-
47
-
-
0034284060
-
Polymer principles of protein calorimetric two-state cooperativity
-
Kaya, H., and H. S. Chan. 2000. Polymer principles of protein calorimetric two-state cooperativity. Proteins. 40:637-661.
-
(2000)
Proteins
, vol.40
, pp. 637-661
-
-
Kaya, H.1
Chan, H.S.2
-
48
-
-
33746102627
-
Atom-by-atom analysis of global downhill protein folding
-
Sadqi, M., D. Fushman, and V. Muñoz. 2006. Atom-by-atom analysis of global downhill protein folding. Nature. 442:317-321.
-
(2006)
Nature
, vol.442
, pp. 317-321
-
-
Sadqi, M.1
Fushman, D.2
Muñoz, V.3
-
49
-
-
23944522022
-
Downhill protein folding: Evolution meets physics
-
Gruebele, M. 2005. Downhill protein folding: evolution meets physics. C. R. Biol. 328:701-712.
-
(2005)
C. R. Biol.
, vol.328
, pp. 701-712
-
-
Gruebele, M.1
-
50
-
-
40649128566
-
An experimental survey of the transition between two-state and downhill protein folding scenarios
-
Liu, F., D. G. Du,., M. Gruebele. 2008. An experimental survey of the transition between two-state and downhill protein folding scenarios. Proc. Natl. Acad. Sci. USA. 105:2369-2374.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 2369-2374
-
-
Liu, F.1
Du, D.G.2
Gruebele, M.3
-
51
-
-
0037073934
-
Experimental identification of downhill protein folding
-
Garcia-Mira, M. M., M. Sadqi,., V. Muñoz. 2002. Experimental identification of downhill protein folding. Science. 298:2191-2195.
-
(2002)
Science
, vol.298
, pp. 2191-2195
-
-
Garcia-Mira, M.M.1
Sadqi, M.2
Muñoz, V.3
-
52
-
-
3142782241
-
Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates
-
Chavez, L. L., J. N. Onuchic, and C. Clementi. 2004. Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates. J. Am. Chem. Soc. 126:8426-8432.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 8426-8432
-
-
Chavez, L.L.1
Onuchic, J.N.2
Clementi, C.3
-
53
-
-
0026345750
-
Folding of chymotrypsin inhibitor-2. 1. Evidence for a 2-state transition
-
Jackson, S. E., and A. R. Fersht. 1991. Folding of chymotrypsin inhibitor-2. 1. Evidence for a 2-state transition. Biochemistry. 30:10428-10435.
-
(1991)
Biochemistry
, Issue.30
, pp. 10428-10435
-
-
Jackson, S.E.1
Fersht, A.R.2
-
54
-
-
0030984109
-
Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability
-
Scalley, M. L., and D. Baker. 1997. Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability. Proc. Natl. Acad. Sci. USA. 94:10636-10640.
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 10636-10640
-
-
Scalley, M.L.1
Baker, D.2
-
55
-
-
0033527587
-
Submillisecond folding of the peripheral subunit-binding domain
-
Spector, S., and D. P. Raleigh. 1999. Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol. 293:763-768.
-
(1999)
J. Mol. Biol.
, vol.293
, pp. 763-768
-
-
Spector, S.1
Raleigh, D.P.2
-
56
-
-
0037453348
-
A thermodynamic and kinetic analysis of the folding pathway of an SH3 domain entropically stabilised by a redesigned hydrophobic core
-
Cobos, E. S., V. V. Filimonov, ., J. C. Martínez. 2003. A thermodynamic and kinetic analysis of the folding pathway of an SH3 domain entropically stabilised by a redesigned hydrophobic core. J. Mol. Biol. 328:221-233.
-
(2003)
J. Mol. Biol.
, vol.328
, pp. 221-233
-
-
Cobos, E.S.1
Filimonov, V.V.2
Martínez, J.C.3
-
57
-
-
0037470575
-
Rapid cooperative two-state folding of a miniature α-β Protein and design of a thermostable variant
-
Horng, J. C., V. Moroz, and D. P. Raleigh. 2003. Rapid cooperative two-state folding of a miniature α-β protein and design of a thermostable variant. J. Mol. Biol. 326:1261-1270.
-
(2003)
J. Mol. Biol.
, vol.326
, pp. 1261-1270
-
-
Horng, J.C.1
Moroz, V.2
Raleigh, D.P.3
-
58
-
-
25144462746
-
Ultra-fast barrierlimited folding in the peripheral subunit-binding domain family
-
Ferguson, N., T. D. Sharpe, ., A. R. Fersht. 2005. Ultra-fast barrierlimited folding in the peripheral subunit-binding domain family. J. Mol. Biol. 353:427-446.
-
(2005)
J. Mol. Biol.
, vol.353
, pp. 427-446
-
-
Ferguson, N.1
Sharpe, T.D.2
Fersht, A.R.3
-
59
-
-
33645294148
-
Conformational entropic barriers in topology-dependent protein folding: Perspectives from a simple nativecentric polymer model
-
Wallin, S., and H. S. Chan. 2006. Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple nativecentric polymer model. J. Phys. Condens. Matter. 18:S307-S328.
-
(2006)
J. Phys. Condens. Matter.
, vol.18
-
-
Wallin, S.1
Chan, H.S.2
-
60
-
-
0346734133
-
Ultrafast folding of α3D: A de novo designed three-helix bundle protein
-
Zhu, Y., D. O. Alonso, ., F. Gai. 2003. Ultrafast folding of α3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA. 100:15486-15491.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 15486-15491
-
-
Zhu, Y.1
Alonso, D.O.2
Gai, F.3
-
61
-
-
63149100950
-
A designed protein as experimental model of primordial folding
-
Sadqi, M., E. de Alba, ., V. Muñoz. 2009. A designed protein as experimental model of primordial folding. Proc. Natl. Acad. Sci. USA. 106:4127-4132.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 4127-4132
-
-
Sadqi, M.1
De Alba, E.2
Muñoz, V.3
-
63
-
-
0030979740
-
Folding funnels and energy landscapes of larger proteins within the capillarity approximation
-
Wolynes, P. G. 1997. Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proc. Natl. Acad. Sci. USA. 94:6170-6175.
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 6170-6175
-
-
Wolynes, P.G.1
-
64
-
-
0347123330
-
Thermal denaturation and folding rates of single domain proteins: Size matters
-
Li, M. S., D. K. Klimov, and D. Thirumalai. 2004. Thermal denaturation and folding rates of single domain proteins: size matters. Polymer (Guildf.). 45:573-579.
-
(2004)
Polymer (Guildf.)
, vol.45
, pp. 573-579
-
-
Li, M.S.1
Klimov, D.K.2
Thirumalai, D.3
-
65
-
-
12944309313
-
Scaling of folding times with protein size
-
Naganathan, A. N., and V. Muñoz. 2005. Scaling of folding times with protein size. J. Am. Chem. Soc. 127:480-481.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 480-481
-
-
Naganathan, A.N.1
Muñoz, V.2
-
66
-
-
4143101125
-
Guiding the search for a protein's maximum rate of folding
-
Zhu, Y., X. Fu, T. Wang, A. Tamura, S. Takada., 2004. Guiding the search for a protein's maximum rate of folding. Chem. Phys. 307: 99-109.
-
(2004)
Chem. Phys.
, vol.307
, pp. 99-109
-
-
Zhu, Y.1
Fu, X.2
Wang, T.3
Tamura, A.4
Takada, S.5
|