메뉴 건너뛰기




Volumn 66, Issue 3, 2003, Pages 496-514

On the difficulty of approximately maximizing agreements

Author keywords

Axis aligned hyper rectangles; Balls; Computational learning theory; Half spaces; Hardness; Inapproximability; Machine learning; Monomials; Neural networks

Indexed keywords

COMPUTATIONAL COMPLEXITY; LEARNING SYSTEMS; NEURAL NETWORKS; POLYNOMIALS; THEOREM PROVING;

EID: 0038575680     PISSN: 00220000     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-0000(03)00038-2     Document Type: Article
Times cited : (130)

References (24)
  • 1
    • 0029638653 scopus 로고
    • The complexity and approximability of finding maximum feasible subsystems of linear relations
    • E. Amaldi, V. Kann, The complexity and approximability of finding maximum feasible subsystems of linear relations, Theoret. Comput. Sci. 147 (1995) 181-210.
    • (1995) Theoret. Comput. Sci. , vol.147 , pp. 181-210
    • Amaldi, E.1    Kann, V.2
  • 2
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin, P.D. Laird, Learning from noisy examples, Mach. Learning 2 (1988) 343-370.
    • (1988) Mach. Learning , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.D.2
  • 3
    • 0031119485 scopus 로고    scopus 로고
    • Hardness of approximate optima in lattices, codes, and linear systems
    • S. Arora, L. Babai, J. Stern, Z. Sweedyk, Hardness of approximate optima in lattices, codes, and linear systems, J. Comput. System Sci. 54 (2) (1997) 317-331.
    • (1997) J. Comput. System Sci. , vol.54 , Issue.2 , pp. 317-331
    • Arora, S.1    Babai, L.2    Stern, J.3    Sweedyk, Z.4
  • 5
    • 85031145090 scopus 로고    scopus 로고
    • On the hardness of unsupervised learning
    • to appear
    • S. Ben-David, N. Eiron, H.U. Simon, On the hardness of unsupervised learning, 2000, to appear.
    • (2000)
    • Ben-David, S.1    Eiron, N.2    Simon, H.U.3
  • 6
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A.L. Blum, R.L. Rivest, Training a 3-node neural network is NP-complete, Neural Networks 5 (1) (1992) 117-127.
    • (1992) Neural Networks , vol.5 , Issue.1 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 8
    • 0029408426 scopus 로고
    • On the complexity of training neural networks with continuous activation functions
    • B. DasGupta, H.T. Siegelmann, Eduardo D. Sontag, On the complexity of training neural networks with continuous activation functions, IEEE Trans. Neural Networks 6 (6) (1995) 1490-1504.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.6 , pp. 1490-1504
    • DasGupta, B.1    Siegelmann, H.T.2    Sontag, E.D.3
  • 9
    • 0030169930 scopus 로고    scopus 로고
    • Computing the maximum bichromatic discrepancy, with applications in computer graphics and machine learning
    • D.P. Dobkin, D. Gunopulos, W. Maass, Computing the maximum bichromatic discrepancy, with applications in computer graphics and machine learning, J. Comput. System Sci. 52 (3) (1996) 453-470.
    • (1996) J. Comput. System Sci. , vol.52 , Issue.3 , pp. 453-470
    • Dobkin, D.P.1    Gunopulos, D.2    Maass, W.3
  • 14
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other learning applications, Inform. Comput. 100 (1) (1992) 78-150.
    • (1992) Inform. Comput. , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 15
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimizing disagreements
    • D.P. Helmbold, P.M. Long, Tracking drifting concepts by minimizing disagreements, Mach. Learning 14 (1) (1994) 27-46.
    • (1994) Mach. Learning , vol.14 , Issue.1 , pp. 27-46
    • Helmbold, D.P.1    Long, P.M.2
  • 18
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • M. Kearns, M. Li, Learning in the presence of malicious errors, SIAM J. Comput. 22 (4) (1993) 807-837.
    • (1993) SIAM J. Comput. , vol.22 , Issue.4 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 19
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning boolean formulae and finite automata
    • M. Kearns, L. Valiant, Cryptographic limitations on learning boolean formulae and finite automata, J. Assoc. Comput. Mach. 41 (1) (1994) 67-95.
    • (1994) J. Assoc. Comput. Mach. , vol.41 , Issue.1 , pp. 67-95
    • Kearns, M.1    Valiant, L.2
  • 23
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples
    • L. Pitt, L.G. Valiant, Computational limitations on learning from examples, J. Assoc. Comput. Mach. 35 (4) (1988) 965-984.
    • (1988) J. Assoc. Comput. Mach. , vol.35 , Issue.4 , pp. 965-984
    • Pitt, L.1    Valiant, L.G.2
  • 24
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire, The strength of weak learnability, Mach. Learning 5 (1990) 197-227.
    • (1990) Mach. Learning , vol.5 , pp. 197-227
    • Schapire, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.