-
2
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
4
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor, ACM Press, Pittsburgh, PA
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144-152. ACM Press, Pittsburgh, PA, 1992.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
5
-
-
0042552138
-
A computational method for the indefinite quadratic programming problem
-
J. R. Bunch and L. Kaufman. A computational method for the indefinite quadratic programming problem. Linear Algebra and Its Applications, 341-370, 1980.
-
(1980)
Linear Algebra and Its Applications
, pp. 341-370
-
-
Bunch, J.R.1
Kaufman, L.2
-
6
-
-
0002400882
-
Simplified support vector decision rules. in L. Saitta, editor
-
Morgan Kaufmann, San Mateo, CA
-
C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor, Proceedings of the 13th International Conference on Machine Learning, pages 71-77. Morgan Kaufmann, San Mateo, CA, 1996.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning
, pp. 71-77
-
-
Burges, C.J.C.1
-
8
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
84899013173
-
Linear support vector regression machines
-
M. C. Mozer, M. L. Jordan, and T. Petsche, editors, MIT Press, Cambridge, MA
-
H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Linear support vector regression machines. In M. C. Mozer, M. L. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 155-161. MIT Press, Cambridge, MA, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
13
-
-
84889989558
-
Sur les fonctionelles continues et les fonctionelles analytiques
-
R. Gateaux. Sur les fonctionelles continues et les fonctionelles analytiques. Bulletin de la Soçiété Mathématique de France, 50:1-21, 1922.
-
(1922)
Bulletin de la Soçiété Mathématique de France
, vol.50
, pp. 1-21
-
-
Gateaux, R.1
-
14
-
-
85090345282
-
A one neuron truck backer-upper
-
IEEE, Baltimore, MD
-
S. Geva, J. Sitte, and G. Willshire. A one neuron truck backer-upper. In Proceedings of the International Joint Conference on Neural Networks, pages 850-856. IEEE, Baltimore, MD, 1992.
-
(1992)
Proceedings of the International Joint Conference on Neural Networks
, pp. 850-856
-
-
Geva, S.1
Sitte, J.2
Willshire, G.3
-
15
-
-
0003891770
-
Convergence rates of approximation by translates
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA
-
F. Girosi and G. Anzellotti. Convergence rates of approximation by translates. Technical Report AIM-1288, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, 1992.
-
(1992)
Technical Report AIM-1288
-
-
Girosi, F.1
Anzellotti, G.2
-
17
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12:55-67, 1970.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
18
-
-
0000171374
-
Robust statistics: A review
-
P. J. Huber. Robust statistics: a review. Annals of Statistics, 43:1041, 1972.
-
(1972)
Annals of Statistics
, vol.43
, pp. 1041
-
-
Huber, P.J.1
-
19
-
-
0030392640
-
Mesh reduction with error control
-
R. Yagel, editor, ACM, New York
-
R. Klein, G. Liebich, and W. Straßer. Mesh reduction with error control. In R. Yagel, editor, Visualization 96, pages 311-318. ACM, New York, 1996.
-
(1996)
Visualization
, vol.96
, pp. 311-318
-
-
Klein, R.1
Liebich, G.2
Straßer, W.3
-
20
-
-
0008847393
-
From data distribution to regularization in invariant learning
-
T. K. Leen. From data distribution to regularization in invariant learning. Neural Computation, 7(5):974-981, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.5
, pp. 974-981
-
-
Leen, T.K.1
-
21
-
-
0041969153
-
Prior information and generalized questions
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA
-
J. C. Lemm. Prior information and generalized questions. Technical Report AIM-1598, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, 1996.
-
(1996)
Technical Report AIM-1598
-
-
Lemm, J.C.1
-
22
-
-
0003477881
-
-
Ph.D. thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA
-
D. J. C. MacKay. Bayesian Modelling and Neural Networks. Ph.D. thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 1991.
-
(1991)
Bayesian Modelling and Neural Networks
-
-
MacKay, D.J.C.1
-
24
-
-
84956628443
-
Predicting time series with support vector machines
-
K.-R. Müller, A. J. Smola, G. Ratsch, B. Schölkopf, J. Kohlmorgen, and V Vapnik. Predicting time series with support vector machines. In Proceedings of the International Conference on Artificial Neural Networks (ICANN 97), pages 999-1004, 1997.
-
(1997)
Proceedings of the International Conference on Artificial Neural Networks (ICANN 97)
, pp. 999-1004
-
-
Müller, K.-R.1
Smola, A.J.2
Ratsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
25
-
-
0028544395
-
Network information criterion - Determining the number of hidden units for artificial neural network models
-
N. Murata, S. Yoshizawa, and S. Amari. Network information criterion - determining the number of hidden units for artificial neural network models. IEEE Transactions on Neural Networks, 5:865-872, 1994.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
26
-
-
0000510098
-
Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations
-
M. Z. Nashed and G. Wahba. Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations. SIAM Journal on Mathematical Analysis, 5(6):974-987, 1974.
-
(1974)
SIAM Journal on Mathematical Analysis
, vol.5
, Issue.6
, pp. 974-987
-
-
Nashed, M.Z.1
Wahba, G.2
-
28
-
-
0004030839
-
A theory of networks for approximation and learning
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA
-
T. Poggio and F. Girosi. A theory of networks for approximation and learning. Technical Report AIM-1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, 1989.
-
(1989)
Technical Report AIM-1140
-
-
Poggio, T.1
Girosi, F.2
-
29
-
-
0004161838
-
-
Cambridge University Press, Cambridge
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing (2nd edn.). Cambridge University Press, Cambridge, 1992.
-
(1992)
Numerical Recipes in C: The Art of Scientific Computing (2nd Edn.)
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
30
-
-
0010229316
-
Minimum-description-length principle
-
J. Rissanen. Minimum-description-length principle. Annals of Statistics, 6:461-464, 1985.
-
(1985)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Rissanen, J.1
-
31
-
-
85118436573
-
Extracting support data for a given task
-
U. M. Fayyad and R. Uthurusamy, editors, AAAI Press, Menlo Park, CA
-
B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a given task. In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International Conference on Knowledge Discovery & Data Mining, pages 252-257. AAAI Press, Menlo Park, CA, 1995.
-
(1995)
Proceedings, First International Conference on Knowledge Discovery & Data Mining
, pp. 252-257
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
32
-
-
84902142380
-
Incorporating invariances in support vector learning machines
-
C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks - ICANN '96, Springer-Verlag, Berlin
-
B. Schölkopf, C. Burges, and V. Vapnik. Incorporating invariances in support vector learning machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks - ICANN '96, pages 47-52. Lecture Notes in Computer Science, Vol. 1112. Springer-Verlag, Berlin, 1996.
-
(1996)
Lecture Notes in Computer Science
, vol.1112
, pp. 47-52
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
33
-
-
0031272926
-
Comparing support vector machines with gaussian kernels to radial basis function classifiers
-
B. Schölkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik. Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11):2758-2765, 1997.
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Schölkopf, B.1
Sung, K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
34
-
-
0003137923
-
Efficient pattern recognition using a new transformation distance
-
S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Morgan Kaufmann, San Mateo, CA
-
P. Simard, Y. Le Cun, and J. Denker. Efficient pattern recognition using a new transformation distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5. Proceedings of the 1992 Conference, pages 50-58. Morgan Kaufmann, San Mateo, CA, 1993.
-
(1993)
Advances in Neural Information Processing Systems 5. Proceedings of the 1992 Conference
, pp. 50-58
-
-
Simard, P.1
Le Cun, Y.2
Denker, J.3
-
35
-
-
0001440803
-
Tangent prop - A formalism for specifying selected invariances in an adaptive network
-
J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Morgan Kaufmann, San Mateo, CA
-
P. Simard, B. Victorri, Y. Le Cun, and J. Denker. Tangent prop - a formalism for specifying selected invariances in an adaptive network. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages 895-903. Morgan Kaufmann, San Mateo, CA, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 895-903
-
-
Simard, P.1
Victorri, B.2
Le Cun, Y.3
Denker, J.4
-
39
-
-
0003551703
-
LOQO: An interior point code for quadratic programming
-
Program in Statistics & Operations Research, Princeton University, Princeton, NJ
-
R. J. Vanderbei. LOQO: an interior point code for quadratic programming. Technical report SOR-94-15, Program in Statistics & Operations Research, Princeton University, Princeton, NJ, 1994.
-
(1994)
Technical Report SOR-94-15
-
-
Vanderbei, R.J.1
-
42
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
M. C. Mozer, M. L. Jordan, and T. Petsche, editors, MIT Press, Cambridge, MA
-
V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. C. Mozer, M. L. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287. MIT Press, Cambridge, MA, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
44
-
-
0042221577
-
A unifying framework for invariant pattern recognition
-
J. Wood and J. Shawe-Taylor. A unifying framework for invariant pattern recognition. Pattern Recognition Letters, 17:1415-1422, 1996.
-
(1996)
Pattern Recognition Letters
, vol.17
, pp. 1415-1422
-
-
Wood, J.1
Shawe-Taylor, J.2
|