메뉴 건너뛰기




Volumn 22, Issue 1-2, 1998, Pages 211-231

On a kernel-based method for pattern recognition, regression, approximation, and operator inversion

Author keywords

Inverse problems; Kernels; Pattern Recognition; Regression; Regularization; Support vector machines

Indexed keywords


EID: 24044515976     PISSN: 01784617     EISSN: None     Source Type: Journal    
DOI: 10.1007/PL00013831     Document Type: Article
Times cited : (239)

References (44)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 5
    • 0042552138 scopus 로고
    • A computational method for the indefinite quadratic programming problem
    • J. R. Bunch and L. Kaufman. A computational method for the indefinite quadratic programming problem. Linear Algebra and Its Applications, 341-370, 1980.
    • (1980) Linear Algebra and Its Applications , pp. 341-370
    • Bunch, J.R.1    Kaufman, L.2
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 84899013173 scopus 로고    scopus 로고
    • Linear support vector regression machines
    • M. C. Mozer, M. L. Jordan, and T. Petsche, editors, MIT Press, Cambridge, MA
    • H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Linear support vector regression machines. In M. C. Mozer, M. L. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 155-161. MIT Press, Cambridge, MA, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 155-161
    • Drucker, H.1    Burges, C.J.C.2    Kaufman, L.3    Smola, A.4    Vapnik, V.5
  • 13
    • 84889989558 scopus 로고
    • Sur les fonctionelles continues et les fonctionelles analytiques
    • R. Gateaux. Sur les fonctionelles continues et les fonctionelles analytiques. Bulletin de la Soçiété Mathématique de France, 50:1-21, 1922.
    • (1922) Bulletin de la Soçiété Mathématique de France , vol.50 , pp. 1-21
    • Gateaux, R.1
  • 15
    • 0003891770 scopus 로고
    • Convergence rates of approximation by translates
    • Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA
    • F. Girosi and G. Anzellotti. Convergence rates of approximation by translates. Technical Report AIM-1288, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, 1992.
    • (1992) Technical Report AIM-1288
    • Girosi, F.1    Anzellotti, G.2
  • 17
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12:55-67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 18
    • 0000171374 scopus 로고
    • Robust statistics: A review
    • P. J. Huber. Robust statistics: a review. Annals of Statistics, 43:1041, 1972.
    • (1972) Annals of Statistics , vol.43 , pp. 1041
    • Huber, P.J.1
  • 19
    • 0030392640 scopus 로고    scopus 로고
    • Mesh reduction with error control
    • R. Yagel, editor, ACM, New York
    • R. Klein, G. Liebich, and W. Straßer. Mesh reduction with error control. In R. Yagel, editor, Visualization 96, pages 311-318. ACM, New York, 1996.
    • (1996) Visualization , vol.96 , pp. 311-318
    • Klein, R.1    Liebich, G.2    Straßer, W.3
  • 20
    • 0008847393 scopus 로고
    • From data distribution to regularization in invariant learning
    • T. K. Leen. From data distribution to regularization in invariant learning. Neural Computation, 7(5):974-981, 1995.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 974-981
    • Leen, T.K.1
  • 21
    • 0041969153 scopus 로고    scopus 로고
    • Prior information and generalized questions
    • Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA
    • J. C. Lemm. Prior information and generalized questions. Technical Report AIM-1598, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, 1996.
    • (1996) Technical Report AIM-1598
    • Lemm, J.C.1
  • 22
    • 0003477881 scopus 로고
    • Ph.D. thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA
    • D. J. C. MacKay. Bayesian Modelling and Neural Networks. Ph.D. thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 1991.
    • (1991) Bayesian Modelling and Neural Networks
    • MacKay, D.J.C.1
  • 25
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for artificial neural network models
    • N. Murata, S. Yoshizawa, and S. Amari. Network information criterion - determining the number of hidden units for artificial neural network models. IEEE Transactions on Neural Networks, 5:865-872, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 26
    • 0000510098 scopus 로고
    • Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations
    • M. Z. Nashed and G. Wahba. Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations. SIAM Journal on Mathematical Analysis, 5(6):974-987, 1974.
    • (1974) SIAM Journal on Mathematical Analysis , vol.5 , Issue.6 , pp. 974-987
    • Nashed, M.Z.1    Wahba, G.2
  • 28
    • 0004030839 scopus 로고
    • A theory of networks for approximation and learning
    • Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA
    • T. Poggio and F. Girosi. A theory of networks for approximation and learning. Technical Report AIM-1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, 1989.
    • (1989) Technical Report AIM-1140
    • Poggio, T.1    Girosi, F.2
  • 30
    • 0010229316 scopus 로고
    • Minimum-description-length principle
    • J. Rissanen. Minimum-description-length principle. Annals of Statistics, 6:461-464, 1985.
    • (1985) Annals of Statistics , vol.6 , pp. 461-464
    • Rissanen, J.1
  • 32
    • 84902142380 scopus 로고    scopus 로고
    • Incorporating invariances in support vector learning machines
    • C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks - ICANN '96, Springer-Verlag, Berlin
    • B. Schölkopf, C. Burges, and V. Vapnik. Incorporating invariances in support vector learning machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks - ICANN '96, pages 47-52. Lecture Notes in Computer Science, Vol. 1112. Springer-Verlag, Berlin, 1996.
    • (1996) Lecture Notes in Computer Science , vol.1112 , pp. 47-52
    • Schölkopf, B.1    Burges, C.2    Vapnik, V.3
  • 34
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a new transformation distance
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Morgan Kaufmann, San Mateo, CA
    • P. Simard, Y. Le Cun, and J. Denker. Efficient pattern recognition using a new transformation distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5. Proceedings of the 1992 Conference, pages 50-58. Morgan Kaufmann, San Mateo, CA, 1993.
    • (1993) Advances in Neural Information Processing Systems 5. Proceedings of the 1992 Conference , pp. 50-58
    • Simard, P.1    Le Cun, Y.2    Denker, J.3
  • 35
    • 0001440803 scopus 로고
    • Tangent prop - A formalism for specifying selected invariances in an adaptive network
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Morgan Kaufmann, San Mateo, CA
    • P. Simard, B. Victorri, Y. Le Cun, and J. Denker. Tangent prop - a formalism for specifying selected invariances in an adaptive network. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages 895-903. Morgan Kaufmann, San Mateo, CA, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 895-903
    • Simard, P.1    Victorri, B.2    Le Cun, Y.3    Denker, J.4
  • 39
    • 0003551703 scopus 로고
    • LOQO: An interior point code for quadratic programming
    • Program in Statistics & Operations Research, Princeton University, Princeton, NJ
    • R. J. Vanderbei. LOQO: an interior point code for quadratic programming. Technical report SOR-94-15, Program in Statistics & Operations Research, Princeton University, Princeton, NJ, 1994.
    • (1994) Technical Report SOR-94-15
    • Vanderbei, R.J.1
  • 42
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. C. Mozer, M. L. Jordan, and T. Petsche, editors, MIT Press, Cambridge, MA
    • V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. C. Mozer, M. L. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287. MIT Press, Cambridge, MA, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 44
    • 0042221577 scopus 로고    scopus 로고
    • A unifying framework for invariant pattern recognition
    • J. Wood and J. Shawe-Taylor. A unifying framework for invariant pattern recognition. Pattern Recognition Letters, 17:1415-1422, 1996.
    • (1996) Pattern Recognition Letters , vol.17 , pp. 1415-1422
    • Wood, J.1    Shawe-Taylor, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.