-
1
-
-
44649158378
-
-
Aaai'2000 Workshop on Learning from Imbalanced Data Sets. 2000.
-
Aaai'2000 Workshop on Learning from Imbalanced Data Sets. 2000.
-
-
-
-
3
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
Baudat G., and Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation 12 (2000) 2385-2404
-
(2000)
Neural Computation
, vol.12
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
4
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting, and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 1 (1999) 105-139
-
(1999)
Machine Learning
, vol.36
, Issue.1
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
5
-
-
0031191630
-
The use of the area under the roc curve in the evaluation of machine learning algorithms
-
Bradley A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997) 1145-1159
-
(1997)
Pattern Recognition
, vol.30
, pp. 1145-1159
-
-
Bradley, A.P.1
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 (1998) 1895-1923
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
12
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 2 (2000) 139-157
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
15
-
-
44649167029
-
-
Editorial: Special issue on learning from imbalanced data sets. 2004. SIGKDD Explorations 6.
-
Editorial: Special issue on learning from imbalanced data sets. 2004. SIGKDD Explorations 6.
-
-
-
-
18
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 1 (1997) 119-139
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
21
-
-
44649118680
-
-
〈http://mlg.anu.edu.au/∼raetsch/data〉.
-
〈http://mlg.anu.edu.au/∼raetsch/data〉.
-
-
-
-
22
-
-
44649148441
-
-
Icml'2003 Workshop on Learning from Imbalanced Data Sets (ii). 2003.
-
Icml'2003 Workshop on Learning from Imbalanced Data Sets (ii). 2003.
-
-
-
-
26
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 2 (2003) 181-207
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
29
-
-
10444259853
-
Creating diversity in ensembles using artificial data
-
Melville P., and Mooney R.J. Creating diversity in ensembles using artificial data. Information Fusion 6 1 (2005) 99-111
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 99-111
-
-
Melville, P.1
Mooney, R.J.2
-
30
-
-
0036630282
-
A solution for imbalanced training sets problem by combnet-ii and its application on fog forecasting
-
Nugroho A., Kuroyanagi S., and Iwata A. A solution for imbalanced training sets problem by combnet-ii and its application on fog forecasting. IEICE Transactions on Information and Systems (2002) 1165-1174
-
(2002)
IEICE Transactions on Information and Systems
, pp. 1165-1174
-
-
Nugroho, A.1
Kuroyanagi, S.2
Iwata, A.3
-
33
-
-
0342502195
-
Soft margins for adaboost
-
Ratsch G. Soft margins for adaboost. Machine Learning 42 3 (2001) 287-320
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
-
35
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37 3 (1999) 297-336
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
36
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
Schapire R.E., Singer Y., Bartlett P., and Lee W. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics 26 5 (1998) 1651-1686
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Singer, Y.2
Bartlett, P.3
Lee, W.4
-
37
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
Scholkopf B., Sung K.-K., Burges C., Girosi F., Niyogi P., Poggio T., and Vapnik V. Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing 45 11 (1997) 2758-2765
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Scholkopf, B.1
Sung, K.-K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
39
-
-
6444238786
-
Selected tree classifier combination based on both accuracy and error diversity
-
Shin H.W., and Sohn S.Y. Selected tree classifier combination based on both accuracy and error diversity. Pattern Recognition 38 (2005) 191-197
-
(2005)
Pattern Recognition
, vol.38
, pp. 191-197
-
-
Shin, H.W.1
Sohn, S.Y.2
-
40
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong S., and Koller D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research 2 (2001) 45-66
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
41
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
Valentini G., and Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research 5 (2004) 725-775
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.G.2
-
45
-
-
10444224738
-
Diversity measures for multiple classifier system analysis and design
-
Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion 6 (2005) 21-36
-
(2005)
Information Fusion
, vol.6
, pp. 21-36
-
-
Windeatt, T.1
-
46
-
-
20844441675
-
Kba: kernel boundary alignment considering imbalanced data distribution
-
Wu G., and Chang E.Y. Kba: kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge and Data Engineering 17 6 (2005) 786-795
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.6
, pp. 786-795
-
-
Wu, G.1
Chang, E.Y.2
-
47
-
-
85143190795
-
-
Yan, R., Liu, Y., Jin, R., Hauptmann, A., 2003. On predicting rare class with SVM ensemble in scene classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 2003, April 2003, pp. III-21-4.
-
Yan, R., Liu, Y., Jin, R., Hauptmann, A., 2003. On predicting rare class with SVM ensemble in scene classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 2003, April 2003, pp. III-21-4.
-
-
-
|