메뉴 건너뛰기




Volumn 21, Issue 5, 2008, Pages 785-795

AdaBoost with SVM-based component classifiers

Author keywords

AdaBoost; Component classifier; Diversity; Support Vector Machine

Indexed keywords

ALUMINUM; ARCHITECTURAL DESIGN; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; COMPUTER NETWORKS; DECISION MAKING; DECISION THEORY; DECISION TREES; GEARS; IMAGE RETRIEVAL; MATHEMATICAL MODELS; METROPOLITAN AREA NETWORKS; MULTILAYER NEURAL NETWORKS; MULTITASKING; NETWORK PROTOCOLS; NEURAL NETWORKS; SULFATE MINERALS; SUPPORT VECTOR MACHINES; TRANSIENTS; TREES (MATHEMATICS); VECTORS;

EID: 44649197212     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2007.07.001     Document Type: Article
Times cited : (367)

References (47)
  • 1
    • 44649158378 scopus 로고    scopus 로고
    • Aaai'2000 Workshop on Learning from Imbalanced Data Sets. 2000.
    • Aaai'2000 Workshop on Learning from Imbalanced Data Sets. 2000.
  • 3
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G., and Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation 12 (2000) 2385-2404
    • (2000) Neural Computation , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 1 (1999) 105-139
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 (1998) 1895-1923
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 12
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 2 (2000) 139-157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 15
    • 44649167029 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets. 2004. SIGKDD Explorations 6.
    • Editorial: Special issue on learning from imbalanced data sets. 2004. SIGKDD Explorations 6.
  • 18
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 1 (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 44649118680 scopus 로고    scopus 로고
    • 〈http://mlg.anu.edu.au/∼raetsch/data〉.
    • 〈http://mlg.anu.edu.au/∼raetsch/data〉.
  • 22
    • 44649148441 scopus 로고    scopus 로고
    • Icml'2003 Workshop on Learning from Imbalanced Data Sets (ii). 2003.
    • Icml'2003 Workshop on Learning from Imbalanced Data Sets (ii). 2003.
  • 26
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 2 (2003) 181-207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 29
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Melville P., and Mooney R.J. Creating diversity in ensembles using artificial data. Information Fusion 6 1 (2005) 99-111
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 30
    • 0036630282 scopus 로고    scopus 로고
    • A solution for imbalanced training sets problem by combnet-ii and its application on fog forecasting
    • Nugroho A., Kuroyanagi S., and Iwata A. A solution for imbalanced training sets problem by combnet-ii and its application on fog forecasting. IEICE Transactions on Information and Systems (2002) 1165-1174
    • (2002) IEICE Transactions on Information and Systems , pp. 1165-1174
    • Nugroho, A.1    Kuroyanagi, S.2    Iwata, A.3
  • 33
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for adaboost
    • Ratsch G. Soft margins for adaboost. Machine Learning 42 3 (2001) 287-320
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1
  • 35
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37 3 (1999) 297-336
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 36
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R.E., Singer Y., Bartlett P., and Lee W. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics 26 5 (1998) 1651-1686
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Singer, Y.2    Bartlett, P.3    Lee, W.4
  • 38
    • 0034243471 scopus 로고    scopus 로고
    • Boosting neural networks
    • Schwenk H., and Bengio Y. Boosting neural networks. Neural Computation 12 (2000) 1869-1887
    • (2000) Neural Computation , vol.12 , pp. 1869-1887
    • Schwenk, H.1    Bengio, Y.2
  • 39
    • 6444238786 scopus 로고    scopus 로고
    • Selected tree classifier combination based on both accuracy and error diversity
    • Shin H.W., and Sohn S.Y. Selected tree classifier combination based on both accuracy and error diversity. Pattern Recognition 38 (2005) 191-197
    • (2005) Pattern Recognition , vol.38 , pp. 191-197
    • Shin, H.W.1    Sohn, S.Y.2
  • 40
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S., and Koller D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research 2 (2001) 45-66
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 41
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini G., and Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research 5 (2004) 725-775
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 45
    • 10444224738 scopus 로고    scopus 로고
    • Diversity measures for multiple classifier system analysis and design
    • Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion 6 (2005) 21-36
    • (2005) Information Fusion , vol.6 , pp. 21-36
    • Windeatt, T.1
  • 46
    • 20844441675 scopus 로고    scopus 로고
    • Kba: kernel boundary alignment considering imbalanced data distribution
    • Wu G., and Chang E.Y. Kba: kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge and Data Engineering 17 6 (2005) 786-795
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 47
    • 85143190795 scopus 로고    scopus 로고
    • Yan, R., Liu, Y., Jin, R., Hauptmann, A., 2003. On predicting rare class with SVM ensemble in scene classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 2003, April 2003, pp. III-21-4.
    • Yan, R., Liu, Y., Jin, R., Hauptmann, A., 2003. On predicting rare class with SVM ensemble in scene classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 2003, April 2003, pp. III-21-4.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.