-
1
-
-
0030235637
-
Error reduction through learning multiple descriptions
-
K. M. Ali and M. J. Pazzani. Error reduction through learning multiple descriptions. Machine Learning, 24:173-202, 1996.
-
(1996)
Machine Learning
, vol.24
, pp. 173-202
-
-
Ali, K.M.1
Pazzani, M.J.2
-
2
-
-
0031176507
-
Scale-sensitive dimensions, uniform convergence, and learnability
-
N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform convergence, and learnability. Journal of the Association for Computing Machinery, 44(4):616-631, 1997.
-
(1997)
Journal of the Association for Computing Machinery
, vol.44
, Issue.4
, pp. 616-631
-
-
Alon, N.1
Ben-David, S.2
Cesa-Bianchi, N.3
Haussler, D.4
-
5
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
P. L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525-536, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
6
-
-
1542367492
-
Convexity, classification, and risk bounds
-
Department of Statistics, U.C. Berkeley
-
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Technical Report 638, Department of Statistics, U.C. Berkeley, 2003.
-
(2003)
Technical Report 638
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
8
-
-
0000275022
-
Prediction games and arcing algorithms
-
L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7), 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.7
-
-
Breiman, L.1
-
9
-
-
0013228784
-
Some infinity theory for predictor ensembles
-
Statistics Department, UC Berkeley
-
L. Breiman. Some infinity theory for predictor ensembles. Technical Report 577, Statistics Department, UC Berkeley, 2000.
-
(2000)
Technical Report 577
-
-
Breiman, L.1
-
12
-
-
0032350833
-
Balls and bins: A study in negative dependence
-
Sept
-
D. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. Random Structures & Algorithms, 13(2):99-124, Sept 1998.
-
(1998)
Random Structures & Algorithms
, vol.13
, Issue.2
, pp. 99-124
-
-
Dubhashi, D.1
Ranjan, D.2
-
13
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457):77-87, 2002.
-
(2002)
Journal of the American Statistical Association
, vol.97
, Issue.457
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
14
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
17
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 38(2):337-407, 2000.
-
(2000)
The Annals of Statistics
, vol.38
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
20
-
-
0003310528
-
Threshold circuits of bounded depth
-
A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Threshold circuits of bounded depth. Journal of Computer and System Sciences, 46:129-154, 1993.
-
(1993)
Journal of Computer and System Sciences
, vol.46
, pp. 129-154
-
-
Hajnal, A.1
Maass, W.2
Pudlák, P.3
Szegedy, M.4
Turán, G.5
-
22
-
-
26444545593
-
Process consistency for AdaBoost
-
to appear
-
W. Jiang. Process consistency for AdaBoost. Annals of Statistics, to appear.
-
Annals of Statistics
-
-
Jiang, W.1
-
24
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30(1), 2002.
-
(2002)
Annals of Statistics
, vol.30
, Issue.1
-
-
Koltchinskii, V.1
Panchenko, D.2
-
31
-
-
9444269961
-
On the bayes-risk consistency of regularized boosting methods
-
Preliminary version in COLT'02
-
G. Lugosi and N. Vayatis. On the bayes-risk consistency of regularized boosting methods. Annals of Statistics, 2004. Preliminary version in COLT'02.
-
(2004)
Annals of Statistics
-
-
Lugosi, G.1
Vayatis, N.2
-
35
-
-
84898978212
-
Boosting algorithms as gradient descent
-
MIT Press
-
L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In Advances in Neural Information Processing Systems 12, pages 512-518. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
36
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved generalization through explicit optimization of margins. Machine Learning, 38(3):243-255, 2000.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 243-255
-
-
Mason, L.1
Bartlett, P.L.2
Baxter, J.3
-
39
-
-
0033281518
-
Some PAC-bayesian theorems
-
David A. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355-363, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 355-363
-
-
McAllester, D.A.1
-
42
-
-
0008977715
-
Remarques sur un resultat non publi'e de B. Maurey
-
G. Pisier. Remarques sur un resultat non publi'e de B. Maurey. Sem. d'Analyse Fonctionelle, 1(12): 1980-81, 1981.
-
(1981)
Sem. D'Analyse Fonctionelle
, vol.1
, Issue.12
, pp. 1980-1981
-
-
Pisier, G.1
-
45
-
-
9444285591
-
Boosting as a regularized path to a maximum margin classifier
-
S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier. NIPS, 2002.
-
(2002)
NIPS
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
46
-
-
0025448521
-
The strength of weak learnability
-
R. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.1
-
47
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Sun Lee, W.4
-
49
-
-
0035949684
-
Predicting the clinical status of human breast cancer by using gene expression profiles
-
M. West, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA, 98(20):11462-11467, 2001.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, Issue.20
, pp. 11462-11467
-
-
West, M.1
-
50
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
to appear
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics, to appear.
-
Annals of Statistics
-
-
Zhang, T.1
-
51
-
-
1542307688
-
Boosting with early stopping: Convergence and consistency
-
Statistics Department, UC Berkeley
-
T. Zhang and B. Yu. Boosting with early stopping: convergence and consistency. Technical Report 635, Statistics Department, UC Berkeley, 2003.
-
(2003)
Technical Report 635
-
-
Zhang, T.1
Yu, B.2
|