메뉴 건너뛰기




Volumn 2777, Issue , 2003, Pages 273-287

Boosting with diverse base classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFIERS; ERROR ANALYSIS; LEARNING SYSTEMS; PROBLEM SOLVING; THEOREM PROVING;

EID: 9444224951     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-45167-9_21     Document Type: Conference Paper
Times cited : (11)

References (51)
  • 1
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • K. M. Ali and M. J. Pazzani. Error reduction through learning multiple descriptions. Machine Learning, 24:173-202, 1996.
    • (1996) Machine Learning , vol.24 , pp. 173-202
    • Ali, K.M.1    Pazzani, M.J.2
  • 5
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P. L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525-536, 1998.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 6
    • 1542367492 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • Department of Statistics, U.C. Berkeley
    • P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Technical Report 638, Department of Statistics, U.C. Berkeley, 2003.
    • (2003) Technical Report 638
    • Bartlett, P.L.1    Jordan, M.I.2    McAuliffe, J.D.3
  • 8
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7), 1999.
    • (1999) Neural Computation , vol.11 , Issue.7
    • Breiman, L.1
  • 9
    • 0013228784 scopus 로고    scopus 로고
    • Some infinity theory for predictor ensembles
    • Statistics Department, UC Berkeley
    • L. Breiman. Some infinity theory for predictor ensembles. Technical Report 577, Statistics Department, UC Berkeley, 2000.
    • (2000) Technical Report 577
    • Breiman, L.1
  • 12
    • 0032350833 scopus 로고    scopus 로고
    • Balls and bins: A study in negative dependence
    • Sept
    • D. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. Random Structures & Algorithms, 13(2):99-124, Sept 1998.
    • (1998) Random Structures & Algorithms , vol.13 , Issue.2 , pp. 99-124
    • Dubhashi, D.1    Ranjan, D.2
  • 13
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457):77-87, 2002.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 14
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 38(2):337-407, 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 22
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for AdaBoost
    • to appear
    • W. Jiang. Process consistency for AdaBoost. Annals of Statistics, to appear.
    • Annals of Statistics
    • Jiang, W.1
  • 24
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30(1), 2002.
    • (2002) Annals of Statistics , vol.30 , Issue.1
    • Koltchinskii, V.1    Panchenko, D.2
  • 28
  • 31
    • 9444269961 scopus 로고    scopus 로고
    • On the bayes-risk consistency of regularized boosting methods
    • Preliminary version in COLT'02
    • G. Lugosi and N. Vayatis. On the bayes-risk consistency of regularized boosting methods. Annals of Statistics, 2004. Preliminary version in COLT'02.
    • (2004) Annals of Statistics
    • Lugosi, G.1    Vayatis, N.2
  • 36
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved generalization through explicit optimization of margins. Machine Learning, 38(3):243-255, 2000.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 243-255
    • Mason, L.1    Bartlett, P.L.2    Baxter, J.3
  • 39
    • 0033281518 scopus 로고    scopus 로고
    • Some PAC-bayesian theorems
    • David A. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355-363, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 355-363
    • McAllester, D.A.1
  • 42
    • 0008977715 scopus 로고
    • Remarques sur un resultat non publi'e de B. Maurey
    • G. Pisier. Remarques sur un resultat non publi'e de B. Maurey. Sem. d'Analyse Fonctionelle, 1(12): 1980-81, 1981.
    • (1981) Sem. D'Analyse Fonctionelle , vol.1 , Issue.12 , pp. 1980-1981
    • Pisier, G.1
  • 45
    • 9444285591 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier. NIPS, 2002.
    • (2002) NIPS
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 46
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1
  • 47
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Sun Lee, W.4
  • 49
    • 0035949684 scopus 로고    scopus 로고
    • Predicting the clinical status of human breast cancer by using gene expression profiles
    • M. West, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA, 98(20):11462-11467, 2001.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , Issue.20 , pp. 11462-11467
    • West, M.1
  • 50
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • to appear
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics, to appear.
    • Annals of Statistics
    • Zhang, T.1
  • 51
    • 1542307688 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • Statistics Department, UC Berkeley
    • T. Zhang and B. Yu. Boosting with early stopping: convergence and consistency. Technical Report 635, Statistics Department, UC Berkeley, 2003.
    • (2003) Technical Report 635
    • Zhang, T.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.