메뉴 건너뛰기




Volumn 26, Issue 8, 2008, Pages 1276-1286

A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor

Author keywords

Computer aided dug design; Drug discovery; High throughput screening; Lead discovery; Machine learning method; Virtual screening

Indexed keywords

DRUG PRODUCTS; LIGANDS; PROTEINS; VIRTUAL REALITY;

EID: 43049157546     PISSN: 10933263     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmgm.2007.12.002     Document Type: Article
Times cited : (81)

References (87)
  • 1
    • 11144323163 scopus 로고    scopus 로고
    • Virtual screening of chemical libraries
    • Shoichet B.K. Virtual screening of chemical libraries. Nature 432 (2004) 862-865
    • (2004) Nature , vol.432 , pp. 862-865
    • Shoichet, B.K.1
  • 3
    • 33746058237 scopus 로고    scopus 로고
    • Streamlining lead discovery by aligning in silico and high-throughput screening
    • Davies J.W., Glick M., and Jenkins J.L. Streamlining lead discovery by aligning in silico and high-throughput screening. Curr. Opin. Chem. Biol. 10 (2006) 343-351
    • (2006) Curr. Opin. Chem. Biol. , vol.10 , pp. 343-351
    • Davies, J.W.1    Glick, M.2    Jenkins, J.L.3
  • 4
    • 33751246188 scopus 로고    scopus 로고
    • Similarity-based virtual screening using 2D fingerprints
    • Willett P. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11 (2006) 1046-1053
    • (2006) Drug Discov. Today , vol.11 , pp. 1046-1053
    • Willett, P.1
  • 5
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: towards prediction paradise?
    • van de Waterbeemd H., and Gifford E. ADMET in silico modelling: towards prediction paradise?. Nat. Rev. Drug Discov. 2 (2003) 192-204
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 192-204
    • van de Waterbeemd, H.1    Gifford, E.2
  • 6
    • 0041670909 scopus 로고    scopus 로고
    • Support vector machines for ADME property classification
    • Matthew W.B., and Trotter S.B.H. Support vector machines for ADME property classification. QSAR & Combinatorial Sci. 22 (2003) 533-548
    • (2003) QSAR & Combinatorial Sci. , vol.22 , pp. 533-548
    • Matthew, W.B.1    Trotter, S.B.H.2
  • 7
    • 0035438388 scopus 로고    scopus 로고
    • Prediction of biological activity for high-throughput screening using binary kernel discrimination
    • Harper G., Bradshaw J., Gittins J.C., Green D.V., and Leach A.R. Prediction of biological activity for high-throughput screening using binary kernel discrimination. J. Chem. Inf. Comput. Sci. 41 (2001) 1295-1300
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1295-1300
    • Harper, G.1    Bradshaw, J.2    Gittins, J.C.3    Green, D.V.4    Leach, A.R.5
  • 8
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • Jorissen R.N., and Gilson M.K. Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model. 45 (2005) 549-561
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 9
    • 33244482848 scopus 로고    scopus 로고
    • Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers
    • Glick M., Jenkins J.L., Nettles J.H., Hitchings H., and Davies J.W. Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers. J. Chem. Inf. Model. 46 (2006) 193-200
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 193-200
    • Glick, M.1    Jenkins, J.L.2    Nettles, J.H.3    Hitchings, H.4    Davies, J.W.5
  • 10
    • 33750982700 scopus 로고    scopus 로고
    • Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods
    • Li H., Ung C.Y., Yap C.W., Xue Y., Li Z.R., and Chen Y.Z. Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. J. Mol. Graph Model. 25 (2006) 313-323
    • (2006) J. Mol. Graph Model. , vol.25 , pp. 313-323
    • Li, H.1    Ung, C.Y.2    Yap, C.W.3    Xue, Y.4    Li, Z.R.5    Chen, Y.Z.6
  • 11
    • 33244481311 scopus 로고    scopus 로고
    • Screening for new antidepressant leads of multiple activities by support vector machines
    • Lepp Z., Kinoshita T., and Chuman H. Screening for new antidepressant leads of multiple activities by support vector machines. J. Chem. Inf. Model. 46 (2006) 158-167
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 158-167
    • Lepp, Z.1    Kinoshita, T.2    Chuman, H.3
  • 13
    • 33646249968 scopus 로고    scopus 로고
    • New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching
    • Hert J., Willett P., Wilton D.J., Acklin P., Azzaoui K., Jacoby E., and Schuffenhauer A. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 46 (2006) 462-470
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 462-470
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7
  • 14
    • 27444433232 scopus 로고    scopus 로고
    • Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors
    • Franke L., Byvatov E., Werz O., Steinhilber D., Schneider P., and Schneider G. Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors. J. Med. Chem. 48 (2005) 6997-7004
    • (2005) J. Med. Chem. , vol.48 , pp. 6997-7004
    • Franke, L.1    Byvatov, E.2    Werz, O.3    Steinhilber, D.4    Schneider, P.5    Schneider, G.6
  • 15
    • 33744551693 scopus 로고    scopus 로고
    • Structure-based virtual screening of chemical libraries for drug discovery
    • Ghosh S., Nie A., An J., and Huang Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol. 10 (2006) 194-202
    • (2006) Curr. Opin. Chem. Biol. , vol.10 , pp. 194-202
    • Ghosh, S.1    Nie, A.2    An, J.3    Huang, Z.4
  • 17
    • 3342933156 scopus 로고    scopus 로고
    • Target-biased scoring approaches and expert systems in structure-based virtual screening
    • Jansen J.M., and Martin E.J. Target-biased scoring approaches and expert systems in structure-based virtual screening. Curr. Opin. Chem. Biol. 8 (2004) 359-364
    • (2004) Curr. Opin. Chem. Biol. , vol.8 , pp. 359-364
    • Jansen, J.M.1    Martin, E.J.2
  • 18
    • 13944253576 scopus 로고    scopus 로고
    • Optimization and validation of a docking-scoring protocol: application to virtual screening for COX-2 inhibitors
    • Mozziconacci J.C., Arnoult E., Bernard P., Do Q.T., Marot C., and Morin-Allory L. Optimization and validation of a docking-scoring protocol: application to virtual screening for COX-2 inhibitors. J. Med. Chem. 48 (2005) 1055-1068
    • (2005) J. Med. Chem. , vol.48 , pp. 1055-1068
    • Mozziconacci, J.C.1    Arnoult, E.2    Bernard, P.3    Do, Q.T.4    Marot, C.5    Morin-Allory, L.6
  • 19
    • 33646238921 scopus 로고    scopus 로고
    • A novel search engine for virtual screening of very large databases
    • Vidal D., Thormann M., and Pons M. A novel search engine for virtual screening of very large databases. J. Chem. Inf. Model. 46 (2006) 836-843
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 836-843
    • Vidal, D.1    Thormann, M.2    Pons, M.3
  • 21
    • 13944255377 scopus 로고    scopus 로고
    • Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor
    • Evers A., and Klabunde T. Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J. Med. Chem. 48 (2005) 1088-1097
    • (2005) J. Med. Chem. , vol.48 , pp. 1088-1097
    • Evers, A.1    Klabunde, T.2
  • 22
    • 23844444239 scopus 로고    scopus 로고
    • Hierarchical docking of databases of multiple ligand conformations
    • Lorber D.M., and Shoichet B.K. Hierarchical docking of databases of multiple ligand conformations. Curr. Top Med. Chem. 5 (2005) 739-749
    • (2005) Curr. Top Med. Chem. , vol.5 , pp. 739-749
    • Lorber, D.M.1    Shoichet, B.K.2
  • 23
    • 33646261627 scopus 로고    scopus 로고
    • A knowledge-based weighting approach to ligand-based virtual screening
    • Stiefl N., and Zaliani A. A knowledge-based weighting approach to ligand-based virtual screening. J. Chem. Inf. Model. 46 (2006) 587-596
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 587-596
    • Stiefl, N.1    Zaliani, A.2
  • 27
    • 3242888975 scopus 로고    scopus 로고
    • Integrating virtual screening in lead discovery
    • Oprea T.I., and Matter H. Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol. 8 (2004) 349-358
    • (2004) Curr. Opin. Chem. Biol. , vol.8 , pp. 349-358
    • Oprea, T.I.1    Matter, H.2
  • 28
    • 33845810666 scopus 로고    scopus 로고
    • NIPALSTREE: a new hierarchical clustering approach for large compound libraries and its application to virtual screening
    • Bocker A., Schneider G., and Teckentrup A. NIPALSTREE: a new hierarchical clustering approach for large compound libraries and its application to virtual screening. J. Chem. Inf. Model. 46 (2006) 2220-2229
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2220-2229
    • Bocker, A.1    Schneider, G.2    Teckentrup, A.3
  • 29
    • 33745221417 scopus 로고    scopus 로고
    • The discovery of new 11beta-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening
    • Schuster D., Maurer E.M., Laggner C., Nashev L.G., Wilckens T., Langer T., and Odermatt A. The discovery of new 11beta-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J. Med. Chem. 49 (2006) 3454-3466
    • (2006) J. Med. Chem. , vol.49 , pp. 3454-3466
    • Schuster, D.1    Maurer, E.M.2    Laggner, C.3    Nashev, L.G.4    Wilckens, T.5    Langer, T.6    Odermatt, A.7
  • 30
    • 20444377675 scopus 로고    scopus 로고
    • Human rhinovirus 3C protease: generation of pharmacophore models for peptidic and nonpeptidic inhibitors and their application in virtual screening
    • Steindl T., Laggner C., and Langer T. Human rhinovirus 3C protease: generation of pharmacophore models for peptidic and nonpeptidic inhibitors and their application in virtual screening. J. Chem. Inf. Model. 45 (2005) 716-724
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 716-724
    • Steindl, T.1    Laggner, C.2    Langer, T.3
  • 31
    • 36849009228 scopus 로고    scopus 로고
    • Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins
    • Li H., Yap C.W., Ung C.Y., Xue Y., Li Z.R., Han L.Y., Lin H.H., and Chen Y.Z. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J. Pharm. Sci. 96 (2007) 2838-2860
    • (2007) J. Pharm. Sci. , vol.96 , pp. 2838-2860
    • Li, H.1    Yap, C.W.2    Ung, C.Y.3    Xue, Y.4    Li, Z.R.5    Han, L.Y.6    Lin, H.H.7    Chen, Y.Z.8
  • 32
    • 33646420101 scopus 로고    scopus 로고
    • Statistical learning approach for predicting specific pharmacodynamic, pharmacokinetic or toxicological properties of pharmaceutical agents
    • Li H., Yap C.W., Xue Y., Li Z.R., Ung C.Y., Han L.Y., and Chen Y.Z. Statistical learning approach for predicting specific pharmacodynamic, pharmacokinetic or toxicological properties of pharmaceutical agents. Drug Dev. Res. 66 (2006) 245-259
    • (2006) Drug Dev. Res. , vol.66 , pp. 245-259
    • Li, H.1    Yap, C.W.2    Xue, Y.3    Li, Z.R.4    Ung, C.Y.5    Han, L.Y.6    Chen, Y.Z.7
  • 33
    • 11144320699 scopus 로고    scopus 로고
    • Navigating chemical space for biology and medicine
    • Lipinski C., and Hopkins A. Navigating chemical space for biology and medicine. Nature 432 (2004) 855-861
    • (2004) Nature , vol.432 , pp. 855-861
    • Lipinski, C.1    Hopkins, A.2
  • 35
    • 33646238677 scopus 로고    scopus 로고
    • Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of performance
    • Chen B., Harrison R.F., Pasupa K., Willett P., Wilton D.J., Wood D.J., and Lewell X.Q. Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of performance. J. Chem. Inf. Model. 46 (2006) 478-486
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 478-486
    • Chen, B.1    Harrison, R.F.2    Pasupa, K.3    Willett, P.4    Wilton, D.J.5    Wood, D.J.6    Lewell, X.Q.7
  • 36
    • 3242884966 scopus 로고    scopus 로고
    • High-throughput docking as a source of novel drug leads
    • Alvarez J.C. High-throughput docking as a source of novel drug leads. Curr. Opin. Chem. Biol. 8 (2004) 365-370
    • (2004) Curr. Opin. Chem. Biol. , vol.8 , pp. 365-370
    • Alvarez, J.C.1
  • 38
    • 0035289779 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46 (2001) 3-26
    • (2001) Adv. Drug Deliv. Rev. , vol.46 , pp. 3-26
    • Lipinski, C.A.1    Lombardo, F.2    Dominy, B.W.3    Feeney, P.J.4
  • 39
    • 33745595051 scopus 로고    scopus 로고
    • Minimizing false positives in kinase virtual screens
    • Perola E. Minimizing false positives in kinase virtual screens. Proteins 64 (2006) 422-435
    • (2006) Proteins , vol.64 , pp. 422-435
    • Perola, E.1
  • 40
    • 33748792816 scopus 로고    scopus 로고
    • Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties
    • Cui J., Han L.Y., Lin H.H., Zhang H.L., Tang Z.Q., Zheng C.J., Cao Z.W., and Chen Y.Z. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol. Immunol. 44 (2007) 866-877
    • (2007) Mol. Immunol. , vol.44 , pp. 866-877
    • Cui, J.1    Han, L.Y.2    Lin, H.H.3    Zhang, H.L.4    Tang, Z.Q.5    Zheng, C.J.6    Cao, Z.W.7    Chen, Y.Z.8
  • 42
    • 1942423110 scopus 로고    scopus 로고
    • Antimicrobial dihydrofolate reductase inhibitors-achievements and future options: review
    • Then R.L. Antimicrobial dihydrofolate reductase inhibitors-achievements and future options: review. J. Chemother. 16 (2004) 3-12
    • (2004) J. Chemother. , vol.16 , pp. 3-12
    • Then, R.L.1
  • 43
    • 0344708478 scopus 로고    scopus 로고
    • Anticancer antifolates: current status and future directions
    • McGuire J.J. Anticancer antifolates: current status and future directions. Curr. Pharm. Des. 9 (2003) 2593-2613
    • (2003) Curr. Pharm. Des. , vol.9 , pp. 2593-2613
    • McGuire, J.J.1
  • 44
    • 33645883558 scopus 로고    scopus 로고
    • Progresses in the field of drug design to combat tropical protozoan parasitic diseases
    • Linares G.E., Ravaschino E.L., and Rodriguez J.B. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr. Med. Chem. 13 (2006) 335-360
    • (2006) Curr. Med. Chem. , vol.13 , pp. 335-360
    • Linares, G.E.1    Ravaschino, E.L.2    Rodriguez, J.B.3
  • 45
    • 1242284561 scopus 로고    scopus 로고
    • New antipsychotics and schizophrenia: a review on efficacy and side effects
    • Serretti A., De Ronchi D., Lorenzi C., and Berardi D. New antipsychotics and schizophrenia: a review on efficacy and side effects. Curr. Med. Chem. 1s1 (2004) 343-358
    • (2004) Curr. Med. Chem. , vol.1 s1 , pp. 343-358
    • Serretti, A.1    De Ronchi, D.2    Lorenzi, C.3    Berardi, D.4
  • 46
    • 0034719065 scopus 로고    scopus 로고
    • Pharmacological and surgical options for the treatment of cervical dystonia
    • Adler C.H., and Kumar R. Pharmacological and surgical options for the treatment of cervical dystonia. Neurology 55 (2000) S9-S14
    • (2000) Neurology , vol.55
    • Adler, C.H.1    Kumar, R.2
  • 47
    • 0037272742 scopus 로고    scopus 로고
    • Pharmacological treatment of vertigo
    • Hain T.C., and Uddin M. Pharmacological treatment of vertigo. CNS Drugs 17 (2003) 85-100
    • (2003) CNS Drugs , vol.17 , pp. 85-100
    • Hain, T.C.1    Uddin, M.2
  • 48
    • 0024598462 scopus 로고
    • Rational pharmacotherapy of gastrointestinal motility disorders
    • Demol P., Ruoff H.J., and Weihrauch T.R. Rational pharmacotherapy of gastrointestinal motility disorders. Eur. J. Pediatr. 148 (1989) 489-495
    • (1989) Eur. J. Pediatr. , vol.148 , pp. 489-495
    • Demol, P.1    Ruoff, H.J.2    Weihrauch, T.R.3
  • 49
    • 43049175882 scopus 로고    scopus 로고
    • H.P. Rang, M.M.D., J.M. Ritter Pharmacology, vol. Churchill Livingstone, 2001.
    • H.P. Rang, M.M.D., J.M. Ritter Pharmacology, vol. Churchill Livingstone, 2001.
  • 50
    • 0344686488 scopus 로고    scopus 로고
    • Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships
    • Sutherland J.J., O'Brien L.A., and Weaver D.F. Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships. J. Chem. Inf. Comput. Sci. 43 (2003) 1906-1915
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1906-1915
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 53
    • 0042622243 scopus 로고    scopus 로고
    • SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence
    • Cai C.Z., Han L.Y., Ji Z.L., Chen X., and Chen Y.Z. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31 (2003) 3692-3697
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3692-3697
    • Cai, C.Z.1    Han, L.Y.2    Ji, Z.L.3    Chen, X.4    Chen, Y.Z.5
  • 54
    • 13444251475 scopus 로고    scopus 로고
    • Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach
    • Han L.Y., Cai C.Z., Ji Z.L., Cao Z.W., Cui J., and Chen Y.Z. Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach. Nucleic Acids Res. 32 (2004) 6437-6444
    • (2004) Nucleic Acids Res. , vol.32 , pp. 6437-6444
    • Han, L.Y.1    Cai, C.Z.2    Ji, Z.L.3    Cao, Z.W.4    Cui, J.5    Chen, Y.Z.6
  • 55
    • 30344471071 scopus 로고    scopus 로고
    • Prediction of transporter family from protein sequence by support vector machine approach
    • Lin H.H., Han L.Y., Cai C.Z., Ji Z.L., and Chen Y.Z. Prediction of transporter family from protein sequence by support vector machine approach. Proteins 62 (2006) 218-231
    • (2006) Proteins , vol.62 , pp. 218-231
    • Lin, H.H.1    Han, L.Y.2    Cai, C.Z.3    Ji, Z.L.4    Chen, Y.Z.5
  • 56
    • 43049177428 scopus 로고    scopus 로고
    • JK, W. JOELib/JOELib2. ed. 2005.
    • JK, W. JOELib/JOELib2. ed. 2005.
  • 57
    • 43049172939 scopus 로고    scopus 로고
    • L.Y. Han, C.J. Zheng, B. Xie, J. Jia, X.H. Ma, F. Zhu, H.H. Lin, X. Chen, Y.Z. Chen, Support vector machine approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov. Today (in press).
    • L.Y. Han, C.J. Zheng, B. Xie, J. Jia, X.H. Ma, F. Zhu, H.H. Lin, X. Chen, Y.Z. Chen, Support vector machine approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov. Today (in press).
  • 58
    • 0042202919 scopus 로고    scopus 로고
    • Chemography: the art of navigating in chemical space
    • Oprea T.I., and Gottfries J. Chemography: the art of navigating in chemical space. J. Comb. Chem. 3 (2001) 157-166
    • (2001) J. Comb. Chem. , vol.3 , pp. 157-166
    • Oprea, T.I.1    Gottfries, J.2
  • 59
    • 34247194965 scopus 로고    scopus 로고
    • Reymond, T.F.A.J.-L., Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J. Chem. Inf. Model. 2007 (published on Web 30/01/2007).
    • Reymond, T.F.A.J.-L., Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J. Chem. Inf. Model. 2007 (published on Web 30/01/2007).
  • 62
    • 4444273205 scopus 로고    scopus 로고
    • Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity
    • Tong W., Xie Q., Hong H., Shi L., Fang H., and Perkins R. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity. Environ. Health Perspect. 112 (2004) 1249-1254
    • (2004) Environ. Health Perspect. , vol.112 , pp. 1249-1254
    • Tong, W.1    Xie, Q.2    Hong, H.3    Shi, L.4    Fang, H.5    Perkins, R.6
  • 63
    • 5444269348 scopus 로고    scopus 로고
    • In silico tools to aid risk assessment of endocrine disrupting chemicals
    • Jacobs M.N. In silico tools to aid risk assessment of endocrine disrupting chemicals. Toxicology 205 (2004) 43-53
    • (2004) Toxicology , vol.205 , pp. 43-53
    • Jacobs, M.N.1
  • 64
    • 0037332610 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals
    • Hu J.Y., and Aizawa T. Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals. Water Res. 37 (2003) 1213-1222
    • (2003) Water Res. , vol.37 , pp. 1213-1222
    • Hu, J.Y.1    Aizawa, T.2
  • 65
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • Byvatov E., Fechner U., Sadowski J., and Schneider G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. 43 (2003) 1882-1889
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 66
    • 12244271454 scopus 로고    scopus 로고
    • Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms
    • Doniger S., Hofman T., and Yeh J. Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms. J. Computat. Biol. 9 (2002) 849-864
    • (2002) J. Computat. Biol. , vol.9 , pp. 849-864
    • Doniger, S.1    Hofman, T.2    Yeh, J.3
  • 67
    • 0345737137 scopus 로고    scopus 로고
    • Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers
    • He L., Jurs P.C., Custer L.L., Durham S.K., and Pearl G.M. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers. Chem. Res. Toxicol. 16 (2003) 1567-1580
    • (2003) Chem. Res. Toxicol. , vol.16 , pp. 1567-1580
    • He, L.1    Jurs, P.C.2    Custer, L.L.3    Durham, S.K.4    Pearl, G.M.5
  • 68
    • 2442548465 scopus 로고    scopus 로고
    • Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules
    • Snyder R.D., Pearl G.S., Mandakas G., Choy W.N., Goodsaid F., and Rosenblum I.Y. Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Environ. Mol. Mutagen. 43 (2004) 143-158
    • (2004) Environ. Mol. Mutagen. , vol.43 , pp. 143-158
    • Snyder, R.D.1    Pearl, G.S.2    Mandakas, G.3    Choy, W.N.4    Goodsaid, F.5    Rosenblum, I.Y.6
  • 69
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue Y., Li Z.R., Yap C.W., Sun L.Z., Chen X., and Chen Y.Z. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf. Comput. Sci. 44 (2004) 1630-1638
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 70
    • 2442700335 scopus 로고    scopus 로고
    • Prediction of torsade-causing potential of drugs by support vector machine approach
    • Yap C.W., Cai C.Z., Xue Y., and Chen Y.Z. Prediction of torsade-causing potential of drugs by support vector machine approach. Toxicol. Sci. 79 (2004) 170-177
    • (2004) Toxicol. Sci. , vol.79 , pp. 170-177
    • Yap, C.W.1    Cai, C.Z.2    Xue, Y.3    Chen, Y.Z.4
  • 71
    • 12244273713 scopus 로고    scopus 로고
    • Quantitative structure-pharmacokinetic relationships for drug distribution properties by using general regression neural network
    • Yap C.W., and Chen Y.Z. Quantitative structure-pharmacokinetic relationships for drug distribution properties by using general regression neural network. J. Pharm. Sci. 94 (2005) 153-168
    • (2005) J. Pharm. Sci. , vol.94 , pp. 153-168
    • Yap, C.W.1    Chen, Y.Z.2
  • 72
    • 0344254815 scopus 로고    scopus 로고
    • Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
    • Zernov V.V., Balakin K.V., Ivaschenko A.A., Savchuk N.P., and Pletnev I.V. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J. Chem. Inf. Comput. Sci. 43 (2003) 2048-2056
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 2048-2056
    • Zernov, V.V.1    Balakin, K.V.2    Ivaschenko, A.A.3    Savchuk, N.P.4    Pletnev, I.V.5
  • 73
    • 26944502743 scopus 로고    scopus 로고
    • Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods
    • Li H., Yap C.W., Ung C.Y., Xue Y., Cao Z.W., and Chen Y.Z. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model. 45 (2005) 1376-1384
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1376-1384
    • Li, H.1    Yap, C.W.2    Ung, C.Y.3    Xue, Y.4    Cao, Z.W.5    Chen, Y.Z.6
  • 74
    • 14644431061 scopus 로고    scopus 로고
    • Managing molecular diversity
    • Perez J.J. Managing molecular diversity. Chem. Soc. Rev. 34 (2005) 143-152
    • (2005) Chem. Soc. Rev. , vol.34 , pp. 143-152
    • Perez, J.J.1
  • 76
    • 0032509984 scopus 로고    scopus 로고
    • Random or rational design? Evaluation of diverse compound subsets from chemical structure databases
    • Potter T., and Matter H. Random or rational design? Evaluation of diverse compound subsets from chemical structure databases. J. Med. Chem. 41 (1998) 478-488
    • (1998) J. Med. Chem. , vol.41 , pp. 478-488
    • Potter, T.1    Matter, H.2
  • 77
    • 23844460948 scopus 로고    scopus 로고
    • Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines
    • Yap C.W., and Chen Y.Z. Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. J. Chem. Inf. Model. 45 (2005) 982-992
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 982-992
    • Yap, C.W.1    Chen, Y.Z.2
  • 78
    • 0034142319 scopus 로고    scopus 로고
    • Quantitative structure-property relationships in pharmaceutical research-Part 2
    • Grover I.I., Singh I.I., and Bakshi I.I. Quantitative structure-property relationships in pharmaceutical research-Part 2. Pharm. Sci. Technol. Today 3 (2000) 50-57
    • (2000) Pharm. Sci. Technol. Today , vol.3 , pp. 50-57
    • Grover, I.I.1    Singh, I.I.2    Bakshi, I.I.3
  • 79
    • 0027658970 scopus 로고
    • Counts of all walks as atomic and molecular descriptors
    • Rücker G.R.C. Counts of all walks as atomic and molecular descriptors. J. Chem. Inf. Comput. Sci. 33 (1993) 683-695
    • (1993) J. Chem. Inf. Comput. Sci. , vol.33 , pp. 683-695
    • Rücker, G.R.C.1
  • 80
    • 18344377705 scopus 로고    scopus 로고
    • The discovery of Kv1.5 blockers as a case study for the application of virtual screening approaches
    • Pirard B., Brendel J., and Peukert S. The discovery of Kv1.5 blockers as a case study for the application of virtual screening approaches. J. Chem. Inf. Model. 45 (2005) 477-485
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 477-485
    • Pirard, B.1    Brendel, J.2    Peukert, S.3
  • 81
    • 33646256792 scopus 로고    scopus 로고
    • Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors
    • Rella M., Rushworth C.A., Guy J.L., Turner A.J., Langer T., and Jackson R.M. Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. J. Chem. Inf. Model. 46 (2006) 708-716
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 708-716
    • Rella, M.1    Rushworth, C.A.2    Guy, J.L.3    Turner, A.J.4    Langer, T.5    Jackson, R.M.6
  • 82
    • 33845870927 scopus 로고    scopus 로고
    • In silico prediction of pregnane X receptor activators by machine learning approaches
    • Ung C.Y., Li H., Yap C.W., and Chen Y.Z. In silico prediction of pregnane X receptor activators by machine learning approaches. Mol. Pharmacol. 71 (2007) 158-168
    • (2007) Mol. Pharmacol. , vol.71 , pp. 158-168
    • Ung, C.Y.1    Li, H.2    Yap, C.W.3    Chen, Y.Z.4
  • 83
    • 33845782959 scopus 로고    scopus 로고
    • Analysis of data fusion methods in virtual screening: similarity and group fusion
    • Whittle M., Gillet V.J., Willett P., and Loesel J. Analysis of data fusion methods in virtual screening: similarity and group fusion. J. Chem. Inf. Model. 46 (2006) 2206-2219
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2206-2219
    • Whittle, M.1    Gillet, V.J.2    Willett, P.3    Loesel, J.4
  • 84
    • 43049152494 scopus 로고    scopus 로고
    • PubMed. In National Library of Medicine.
    • PubMed. In National Library of Medicine.
  • 85
    • 43049169608 scopus 로고    scopus 로고
    • MICROMEDEX MICROMEDEX. In MICROMEDEX, Edition expires 12/2003, Greenwood Village, Colorado.
    • MICROMEDEX MICROMEDEX. In MICROMEDEX, Edition expires 12/2003, Greenwood Village, Colorado.
  • 86
    • 43049161858 scopus 로고    scopus 로고
    • Bethesda AHFS drug information, vol. American Society of Health-System Pharmacists Inc., 2001.
    • Bethesda AHFS drug information, vol. American Society of Health-System Pharmacists Inc., 2001.
  • 87
    • 21144435586 scopus 로고    scopus 로고
    • Prediction of genotoxicity of chemical compounds by statistical learning methods
    • Li H., Ung C., Yap C., Xue Y., Li Z., Cao Z., and Chen Y. Prediction of genotoxicity of chemical compounds by statistical learning methods. Chem. Res. Toxicol. 18 (2005) 1071-1080
    • (2005) Chem. Res. Toxicol. , vol.18 , pp. 1071-1080
    • Li, H.1    Ung, C.2    Yap, C.3    Xue, Y.4    Li, Z.5    Cao, Z.6    Chen, Y.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.