-
1
-
-
0035138842
-
Extracellular calcium sensing and extracellular calcium signaling
-
1 Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001 ; 81: 239–297.
-
(2001)
Physiol Rev
, vol.81
, pp. 239-297
-
-
Brown, EM1
MacLeod, RJ2
-
2
-
-
0037650260
-
The agonist‐binding domain of the calcium‐sensing receptor is located at the amino‐terminal domain
-
2 Brauner‐Osborne H, Jensen AA, Sheppard PO, O'Hara P, Krogsgaard‐Larsen P. The agonist‐binding domain of the calcium‐sensing receptor is located at the amino‐terminal domain. J Biol Chem 1999 ; 274: 18382–18386.
-
(1999)
J Biol Chem
, vol.274
, pp. 18382-18386
-
-
Brauner‐Osborne, H1
Jensen, AA2
Sheppard, PO3
O'Hara, P4
Krogsgaard‐Larsen, P5
-
3
-
-
0034712831
-
L‐amino acid sensing by the extracellular Ca2+‐sensing receptor
-
3 Conigrave AD, Quinn SJ, Brown EM. L ‐amino acid sensing by the extracellular Ca 2+ ‐sensing receptor. Proc Natl Acad Sci USA 2000 ; 97: 4814–4819.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 4814-4819
-
-
Conigrave, AD1
Quinn, SJ2
Brown, EM3
-
4
-
-
0025748665
-
Polyarginine, polylysine, and protamine mimic the effects of high extracellular calcium concentrations on dispersed bovine parathyroid cells
-
4 Brown EM, Katz C, Butters R, Kifor O. Polyarginine, polylysine, and protamine mimic the effects of high extracellular calcium concentrations on dispersed bovine parathyroid cells. J Bone Miner Res 1991 ; 6: 1217–1225.
-
(1991)
J Bone Miner Res
, vol.6
, pp. 1217-1225
-
-
Brown, EM1
Katz, C2
Butters, R3
Kifor, O4
-
5
-
-
0031255210
-
The Ca2+‐sensing receptor: a target for polyamines
-
5 Quinn SJ, Ye CP, Diaz R, Kifor O, Bai M, Vassilev P, Brown E. The Ca 2+ ‐sensing receptor: a target for polyamines. Am J Physiol 1997 ; 273: C1315–C1323.
-
(1997)
Am J Physiol
, vol.273
, pp. C1315-C1323
-
-
Quinn, SJ1
Ye, CP2
Diaz, R3
Kifor, O4
Bai, M5
Vassilev, P6
Brown, E7
-
6
-
-
0032584086
-
Calcimimetics with potent and selective activity on the parathyroid calcium receptor
-
6 Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, Van Wagenen BC, DelMar EG, Balandrin MF. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 1998 ; 95: 4040–4045.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 4040-4045
-
-
Nemeth, EF1
Steffey, ME2
Hammerland, LG3
Hung, BC4
Van Wagenen, BC5
Van Wagenen, BC6
DelMar, EG7
Balandrin, MF8
-
7
-
-
0036904133
-
Calcimimetics: therapeutic potential in hyperparathyroidism
-
7 Cohen A, Silverberg SJ. Calcimimetics: therapeutic potential in hyperparathyroidism. Curr Opin Pharmacol 2002 ; 2: 734–739.
-
(2002)
Curr Opin Pharmacol
, vol.2
, pp. 734-739
-
-
Cohen, A1
Silverberg, SJ2
-
8
-
-
0034806606
-
Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone
-
8 Nemeth EF, Delmar EG, Heaton WL, Miller MA, Lambert LD, Conklin RL, Gowen M, Gleason JG, Bhatnagar PK, Fox J. Calcilytic compounds: potent and selective Ca 2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther 2001 ; 299: 323–331.
-
(2001)
J Pharmacol Exp Ther
, vol.299
, pp. 323-331
-
-
Nemeth, EF1
Delmar, EG2
Heaton, WL3
Miller, MA4
Lambert, LD5
Conklin, RL6
Gowen, M7
Gleason, JG8
Bhatnagar, PK9
Fox, J10
-
9
-
-
0033118334
-
Molecular tinkering of G‐protein coupled receptors: an evolutionary success
-
9 Bockaert J, Pin JP. Molecular tinkering of G‐protein coupled receptors: an evolutionary success. EMBO J 1999 ; 18: 1723–1729.
-
(1999)
EMBO J
, vol.18
, pp. 1723-1729
-
-
Bockaert, J1
Pin, JP2
-
10
-
-
0033771402
-
The superfamily of heptahelical receptors
-
10 Lefkowitz RJ. The superfamily of heptahelical receptors. Nat Cell Biol 2000 ; 2: E133–E136.
-
(2000)
Nat Cell Biol
, vol.2
, pp. E133-E136
-
-
Lefkowitz, RJ1
-
12
-
-
0027295942
-
The ligand‐binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins
-
12 O'Hara PJ, Sheppard PO, Thgersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER. The ligand‐binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 1993 ; 11: 41–52.
-
(1993)
Neuron
, vol.11
, pp. 41-52
-
-
O'Hara, PJ1
Sheppard, PO2
Thgersen, H3
Venezia, D4
Haldeman, BA5
McGrane, V6
Houamed, KM7
Thomsen, C8
Gilbert, TL9
Mulvihill, ER10
-
13
-
-
0033600911
-
Identification of the cysteine residues in the amino‐terminal extracellular domain of the human ca receptor critical for dimerization: implications for function of monomeric Ca(2+) receptor
-
13 Ray K, Hauschild BC, Steinbach PJ, Goldsmith PK, Hauache O, Spiegel AM. Identification of the cysteine residues in the amino‐terminal extracellular domain of the human ca receptor critical for dimerization: implications for function of monomeric Ca(2+) receptor. J Biol Chem 1999 ; 274: 27642–27650.
-
(1999)
J Biol Chem
, vol.274
, pp. 27642-27650
-
-
Ray, K1
Hauschild, BC2
Steinbach, PJ3
Goldsmith, PK4
Hauache, O5
Spiegel, AM6
-
14
-
-
0035943596
-
Human Ca2+ receptor extracellular domain: analysis of function of lobe i loop deletion mutants
-
14 Reyes‐Cruz G, Hu J, Goldsmith PK, Steinbach PJ, Spiegel AM. Human Ca 2+ receptor extracellular domain: analysis of function of lobe i loop deletion mutants. J Biol Chem 2001 ; 276: 32145–32151.
-
(2001)
J Biol Chem
, vol.276
, pp. 32145-32151
-
-
Reyes‐Cruz, G1
Hu, J2
Goldsmith, PK3
Steinbach, PJ4
Spiegel, AM5
-
15
-
-
0032483541
-
Dimerization of the extracellular Calcium‐sensing receptor (CaR) on the cell surface of CaR‐transfected HEK293 cells
-
15 Bai M, Trivedi S, Brown EM. Dimerization of the extracellular Calcium‐sensing receptor (CaR) on the cell surface of CaR‐transfected HEK293 cells. J Biol Chem 2001 ; 273: 23605–23610.
-
(2001)
J Biol Chem
, vol.273
, pp. 23605-23610
-
-
Bai, M1
Trivedi, S2
Brown, EM3
-
16
-
-
0033597249
-
Dimerization of the human calcium sensing receptor occurs within the extracellular domain and is eliminated by Cys to Ser mutations at Cys101 and Cys236
-
16 Pace AJ, Gama L, Breitwieser GE. Dimerization of the human calcium sensing receptor occurs within the extracellular domain and is eliminated by Cys to Ser mutations at Cys101 and Cys236. J Biol Chem 1999 ; 274: 11629–11634.
-
(1999)
J Biol Chem
, vol.274
, pp. 11629-11634
-
-
Pace, AJ1
Gama, L2
Breitwieser, GE3
-
17
-
-
0035895907
-
The extracellular calcium‐sensing receptor dimerizes through multiple types of intermolecular interactions
-
17 Zhang Z, Sun S, Quinn SJ, Brown EM, Bai M. The extracellular calcium‐sensing receptor dimerizes through multiple types of intermolecular interactions. J Biol Chem 2001 ; 276: 5316–5322.
-
(2001)
J Biol Chem
, vol.276
, pp. 5316-5322
-
-
Zhang, Z1
Sun, S2
Quinn, SJ3
Brown, EM4
Bai, M5
-
18
-
-
0034604451
-
Crystal structure of rhodopsin: a G protein‐coupled receptor
-
18 Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein‐coupled receptor. Science 2000 ; 289: 739–745.
-
(2000)
Science
, vol.289
, pp. 739-745
-
-
Palczewski, K1
Kumasaka, T2
Hori, T3
Behnke, CA4
Motoshima, H5
Fox, BA6
Le Trong, I7
Teller, DC8
Okada, T9
Stenkamp, RE10
Yamamoto, M11
Miyano, M12
-
19
-
-
1442358771
-
Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)‐sensing receptor
-
19 Petrel C, Kessler A, Maslah F, Dauban P, Dodd RH, Rognan D, Ruat M. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)‐sensing receptor. J Biol Chem 2003 ; 278: 4948–4994.
-
(2003)
J Biol Chem
, vol.278
, pp. 4948-4994
-
-
Petrel, C1
Kessler, A2
Maslah, F3
Dauban, P4
Dodd, RH5
Rognan, D6
Ruat, M7
-
20
-
-
2442548717
-
Positive and negative allosteric modulators of the Ca(2+)‐sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain
-
20 Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M. Positive and negative allosteric modulators of the Ca(2+)‐sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 2004 ; 279: 18990–18997.
-
(2004)
J Biol Chem
, vol.279
, pp. 18990-18997
-
-
Petrel, C1
Kessler, A2
Dauban, P3
Dodd, RH4
Rognan, D5
Ruat, M6
-
21
-
-
1342346546
-
Homology modeling of the transmembrane domain of the human Calcium sensing receptor and localization of an allosteric binding site
-
21 Miedlich SU, Gama L, Seuwen K, Wolf RM, Breitwieser GE. Homology modeling of the transmembrane domain of the human Calcium sensing receptor and localization of an allosteric binding site. J Biol Chem 2004 ; 279: 7254–7263.
-
(2004)
J Biol Chem
, vol.279
, pp. 7254-7263
-
-
Miedlich, SU1
Gama, L2
Seuwen, K3
Wolf, RM4
Breitwieser, GE5
-
22
-
-
11844249400
-
Homology models of the cannabinoid CB1 and CB2 receptors: a docking analysis study
-
22 Montero C, Campillo NE, Goya P, Paez JA. Homology models of the cannabinoid CB1 and CB2 receptors: a docking analysis study. Eur J Med Chem 2005 ; 40: 75–83.
-
(2005)
Eur J Med Chem
, vol.40
, pp. 75-83
-
-
Montero, C1
Campillo, NE2
Goya, P3
Paez, JA4
-
23
-
-
21044437346
-
Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane‐aqueous system
-
23 Zhang Y, Sham YY, Rajamani R, Gao J, Portoghese PS. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane‐aqueous system. Chembiochem 2005 ; 6: 853–859.
-
(2005)
Chembiochem
, vol.6
, pp. 853-859
-
-
Zhang, Y1
Sham, YY2
Rajamani, R3
Gao, J4
Portoghese, PS5
-
24
-
-
6044260116
-
Successful Virtual screening for a submicromolar antagonist of the neurokinin‐1 receptor based on a ligand‐supported homology model
-
24 Evers A, Klebe G. Successful Virtual screening for a submicromolar antagonist of the neurokinin‐1 receptor based on a ligand‐supported homology model. J Med Chem 2004 ; 47: 5381–5392.
-
(2004)
J Med Chem
, vol.47
, pp. 5381-5392
-
-
Evers, A1
Klebe, G2
-
25
-
-
13944255377
-
Structure‐based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the α1a adrenergic receptor
-
25 Evers A, Klabunde T. Structure‐based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the α1a adrenergic receptor. J Med Chem 2005 ; 48: 1088–1097.
-
(2005)
J Med Chem
, vol.48
, pp. 1088-1097
-
-
Evers, A1
Klabunde, T2
-
26
-
-
13444267334
-
Modeling the similarity and divergence of Dopamine D2 like receptors and identification of validated ligand receptor complexes
-
26 Boeckler F, Lanig H, Gmeiner P. Modeling the similarity and divergence of Dopamine D2 like receptors and identification of validated ligand receptor complexes. J Med Chem 2005 ; 48: 694–709.
-
(2005)
J Med Chem
, vol.48
, pp. 694-709
-
-
Boeckler, F1
Lanig, H2
Gmeiner, P3
-
27
-
-
12144268032
-
Modelled structure of a G‐protein‐coupled receptor: the cholecystokinin‐1 receptor
-
27 Archer‐Lahlou E, Tikhonova I, Escrieut C, Dufresne M, Seva C, Pradayrol L, Moroder L, Maigret B, Fourmy D. Modelled structure of a G‐protein‐coupled receptor: the cholecystokinin‐1 receptor. J Med Chem 2005 ; 48: 180–191.
-
(2005)
J Med Chem
, vol.48
, pp. 180-191
-
-
Archer‐Lahlou, E1
Tikhonova, I2
Escrieut, C3
Dufresne, M4
Seva, C5
Pradayrol, L6
Moroder, L7
Maigret, B8
Fourmy, D9
-
28
-
-
20444363062
-
Analysis of structure–activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models
-
28 Rivara S, Lorenzi S, Mor M, Plazzi PV, Spadoni G, Bedini A, Tarzia G. Analysis of structure–activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models. J Med Chem 2005 ; 48: 4049–4060.
-
(2005)
J Med Chem
, vol.48
, pp. 4049-4060
-
-
Rivara, S1
Lorenzi, S2
Mor, M3
Plazzi, PV4
Spadoni, G5
Bedini, A6
Tarzia, G7
-
29
-
-
20544443426
-
Antagonist and agonist binding models of the human gonadotropin‐releasing hormone receptor
-
29 Soderhall JA, Polymeropoulos EE, Paulini K, Gunther E, Kuhne R. Antagonist and agonist binding models of the human gonadotropin‐releasing hormone receptor. Biochem Biophys Res Commun 2005 ; 333: 568–582.
-
(2005)
Biochem Biophys Res Commun
, vol.333
, pp. 568-582
-
-
Soderhall, JA1
Polymeropoulos, EE2
Paulini, K3
Gunther, E4
Kuhne, R5
-
30
-
-
10844246435
-
Complex of an active mu‐opioid receptor with a cyclic peptide agonist modeled from experimental constraints
-
30 Fowler CB, Pogozheva ID, Lomize AL, Levine 3rd H, Mosberg HI. Complex of an active mu‐opioid receptor with a cyclic peptide agonist modeled from experimental constraints. Biochemistry 2004 ; 43: 15796–15810.
-
(2004)
Biochemistry
, vol.43
, pp. 15796-15810
-
-
Fowler, CB1
Pogozheva, ID2
Lomize, AL3
Levine, H4
Mosberg, HI5
-
31
-
-
18144409461
-
Model structures of use α‐2 adrenoceptors in complex with automatically docked antagonist ligands raise the possibility of interactions dissimilar from agonist ligands
-
31 Xhaard H, Nyronen T, Rantanen VV, Ruuskanen JO, Laurila J, Salminen T, Scheinin M, Johnson MS. Model structures of use α‐2 adrenoceptors in complex with automatically docked antagonist ligands raise the possibility of interactions dissimilar from agonist ligands. J Struct Biol 2005 ; 150: 126–143.
-
(2005)
J Struct Biol
, vol.150
, pp. 126-143
-
-
Xhaard, H1
Nyronen, T2
Rantanen, VV3
Ruuskanen, JO4
Laurila, J5
Salminen, T6
Scheinin, M7
Johnson, MS8
-
32
-
-
26444467486
-
Linking agonist binding to histamine H1 receptor activation
-
32 Jongejan A, Bruysters M, Ballesteros JA, Haaksma E, Bakker RA, Pardo L, Leurs R. Linking agonist binding to histamine H1 receptor activation. Nat Chem Biol 2005 ; 1: 98–103.
-
(2005)
Nat Chem Biol
, vol.1
, pp. 98-103
-
-
Jongejan, A1
Bruysters, M2
Ballesteros, JA3
Haaksma, E4
Bakker, RA5
Pardo, L6
Leurs, R7
-
33
-
-
14644403649
-
Receptor–antagonist interactions in the complexes of agouti and agouti‐related protein with human melanocortin 1 and 4 receptors
-
33 Chai BX, Pogozheva ID, Lai YM, Li JY, Neubig RR, Mosberg HI, Gantz I. Receptor–antagonist interactions in the complexes of agouti and agouti‐related protein with human melanocortin 1 and 4 receptors. Biochemistry 2005 ; 44: 3418–3431.
-
(2005)
Biochemistry
, vol.44
, pp. 3418-3431
-
-
Chai, BX1
Pogozheva, ID2
Lai, YM3
Li, JY4
Neubig, RR5
Mosberg, HI6
Gantz, I7
-
34
-
-
1542357653
-
Conformational and molecular modeling studies of β‐cyclodextrin‐heptagastrin and the third extracellular loop of the cholecystokinin 2 receptor
-
34 Giragossian C, Schaschke N, Moroder L, Mierke DF. Conformational and molecular modeling studies of β‐cyclodextrin‐heptagastrin and the third extracellular loop of the cholecystokinin 2 receptor. Biochemistry 2004 ; 43: 2724–2731.
-
(2004)
Biochemistry
, vol.43
, pp. 2724-2731
-
-
Giragossian, C1
Schaschke, N2
Moroder, L3
Mierke, DF4
-
35
-
-
1542429075
-
Evidence for the proximity of the extreme N‐terminus of the neurokinin‐2 (NK2) tachykinin receptor to Cys(167) in the putative fourth transmembrane helix
-
35 Bhogal N, Blaney FE, Ingley PM, Rees J, Findlay JBC. Evidence for the proximity of the extreme N‐terminus of the neurokinin‐2 (NK2) tachykinin receptor to Cys(167) in the putative fourth transmembrane helix. Biochemistry 2004 ; 43: 3027–3038.
-
(2004)
Biochemistry
, vol.43
, pp. 3027-3038
-
-
Bhogal, N1
Blaney, FE2
Ingley, PM3
Rees, J4
Findlay, JBC5
-
36
-
-
0037235663
-
Protein‐based virtual screening of chemical databases. II. Are homology models of G‐protein coupled receptors suitable targets?
-
36 Bissantz C, Bernard P, Hibert M, Rognan D. Protein‐based virtual screening of chemical databases. II. Are homology models of G‐protein coupled receptors suitable targets? Proteins 2003 ; 50: 5–25.
-
(2003)
Proteins
, vol.50
, pp. 5-25
-
-
Bissantz, C1
Bernard, P2
Hibert, M3
Rognan, D4
-
37
-
-
3142779088
-
Structural features of the inactive and active states of the melanin‐concentrating hormone receptors: insights from molecular simulations
-
37 Vitale RM, Pedone C, De Benedetti PG, Fanelli F. Structural features of the inactive and active states of the melanin‐concentrating hormone receptors: insights from molecular simulations. Proteins 2004 ; 56: 430–448.
-
(2004)
Proteins
, vol.56
, pp. 430-448
-
-
Vitale, RM1
Pedone, C2
De Benedetti, PG3
Fanelli, F4
-
38
-
-
0141704146
-
3D structural model of the G‐protein‐coupled cannabinoid CB2 receptor
-
38 Xie XQ, Chen JZ, Billings EM. 3D structural model of the G‐protein‐coupled cannabinoid CB2 receptor. Proteins 2003 ; 53: 307–319.
-
(2003)
Proteins
, vol.53
, pp. 307-319
-
-
Xie, XQ1
Chen, JZ2
Billings, EM3
-
39
-
-
0037039304
-
NMR and modeling studies of a synthetic extracellular loop II of the κ opioid receptor in a DPC micelle
-
39 Zhang L, DeHaven RN, Goodman M. NMR and modeling studies of a synthetic extracellular loop II of the κ opioid receptor in a DPC micelle. Biochemistry 2002 ; 41: 61–68.
-
(2002)
Biochemistry
, vol.41
, pp. 61-68
-
-
Zhang, L1
DeHaven, RN2
Goodman, M3
-
40
-
-
0036663630
-
A homology‐based model of the human 5‐HT2A receptor derived from an in silico activated G‐protein coupled receptor
-
40 Chambers J, Nichols DE. A homology‐based model of the human 5‐HT2A receptor derived from an in silico activated G‐protein coupled receptor. J Comput‐Aided Mol Des 2002 ; 16: 511–520.
-
(2002)
J Comput‐Aided Mol Des
, vol.16
, pp. 511-520
-
-
Chambers, J1
Nichols, DE2
-
41
-
-
0027506471
-
The probable arrangement of the helices in G‐protein‐coupled receptors
-
41 Baldwin JM. The probable arrangement of the helices in G‐protein‐coupled receptors. EMBO J 1993 ; 12: 1693–1703.
-
(1993)
EMBO J
, vol.12
, pp. 1693-1703
-
-
Baldwin, JM1
-
42
-
-
0031565726
-
An α‐carbon template for the transmembrane helices in the rhodopsin family of G‐protein‐coupled receptors
-
42 Baldwin JM, Schertler GF, Unger VM. An α‐carbon template for the transmembrane helices in the rhodopsin family of G‐protein‐coupled receptors. J Mol Biol 1997 ; 272: 144–164.
-
(1997)
J Mol Biol
, vol.272
, pp. 144-164
-
-
Baldwin, JM1
Schertler, GF2
Unger, VM3
-
43
-
-
0037452868
-
Sequence analyses of G‐protein‐coupled receptors: similarities to rhodopsin
-
43 Mirzadegan T, Benko G, Filipek S, Palczewski K. Sequence analyses of G‐protein‐coupled receptors: similarities to rhodopsin. Biochemistry 2003 ; 42: 2759–2767.
-
(2003)
Biochemistry
, vol.42
, pp. 2759-2767
-
-
Mirzadegan, T1
Benko, G2
Filipek, S3
Palczewski, K4
-
45
-
-
0242322528
-
An implicit membrane generalized Born theory for the study of structure, stability, and interactions of membrane proteins
-
45 Im W, Feig M, Brooks CL, III. An implicit membrane generalized Born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 2003 ; 85: 2900–2918.
-
(2003)
Biophys J
, vol.85
, pp. 2900-2918
-
-
Im, W1
Feig, M2
Brooks, CL3
-
46
-
-
84986512474
-
CHARMM: a program for macromolecular energy, minimization and dynamics calculations
-
46 Brooks BR, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M. CHARMM: a program for macromolecular energy, minimization and dynamics calculations. J Comput Chem 1983 ; 4: 187–217.
-
(1983)
J Comput Chem
, vol.4
, pp. 187-217
-
-
Brooks, BR1
Bruccoleri, R2
Olafson, B3
States, D4
Swaminathan, S5
Karplus, M6
-
47
-
-
0041784950
-
All‐atom empirical potential for molecular modeling and dynamics studies of proteins
-
47 MacKerell AD, Jr, Bashford D, Bellott M, Dunbrack RL, Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph‐McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, III, Roux B, Schlenkrich M, Smith JC, Stote T, Straub JE, Watanabe M, Wiorkiewicz‐Kuczera J, Yin D, Karplus M. All‐atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998 ; 102: 3586–3616.
-
(1998)
J Phys Chem B
, vol.102
, pp. 3586-3616
-
-
MacKerell, AD1
Bashford, D2
Bellott, M3
Dunbrack, RL4
Evanseck, JD5
Field, MJ6
Fischer, S7
Gao, J8
Guo, H9
Ha, S10
Joseph‐McCarthy, D11
Kuchnir, L12
Kuczera, K13
Lau, FTK14
Mattos, C15
Michnick, S16
Ngo, T17
Nguyen, DT18
Prodhom, B19
Reiher, WE20
Roux, B21
Schlenkrich, M22
Smith, JC23
Stote, T24
Straub, JE25
Watanabe, M26
Wiorkiewicz‐Kuczera, J27
Yin, D28
Karplus, M29
more..
-
48
-
-
3142714765
-
Extending the treatment of backbone energetics in protein force fields: limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
-
48 Mackerell AD, Jr, Feig M, Brooks CL, III. Extending the treatment of backbone energetics in protein force fields: limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004 ; 25: 1400–1415.
-
(2004)
J Comput Chem
, vol.25
, pp. 1400-1415
-
-
Mackerell, AD1
Feig, M2
Brooks, CL3
-
49
-
-
1642576012
-
Improved treatment of the protein backbone in empirical force fields
-
49 Mackerell AD, Jr, Feig M, Brooks CL, III. Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 2004 ; 126: 698–699.
-
(2004)
J Am Chem Soc
, vol.126
, pp. 698-699
-
-
Mackerell, AD1
Feig, M2
Brooks, CL3
-
50
-
-
0038054912
-
Force field influence on the observation of [pi]‐helical protein structures in molecular dynamics simulations
-
50 Feig M, MacKerell AD, Jr, Brooks CL, III. Force field influence on the observation of [pi]‐helical protein structures in molecular dynamics simulations. J Phys Chem B 2003 ; 107: 2831–2836.
-
(2003)
J Phys Chem B
, vol.107
, pp. 2831-2836
-
-
Feig, M1
MacKerell, AD2
Brooks, CL3
-
51
-
-
33645786604
-
Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme
-
51 Buck M, Bouguet‐Bonnet S, Pastor RW, MacKerell AD, Jr. Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 2006 ; 90: L36–L38.
-
(2006)
Biophys J
, vol.90
, pp. L36-L38
-
-
Buck, M1
Bouguet‐Bonnet, S2
Pastor, RW3
MacKerell, AD4
-
52
-
-
0032581038
-
Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane α‐helical peptides and gramicidin A
-
52 de Planque MR, Greathouse DV, Koeppe RE II, Schafer H, Marsh D, Killian JA. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane α‐helical peptides and gramicidin A. Biochemistry 1998 ; 37: 9333–9345.
-
(1998)
Biochemistry
, vol.37
, pp. 9333-9345
-
-
de Planque, MR1
Greathouse, DV2
Koeppe, RE3
Schafer, H4
Marsh, D5
Killian, JA6
-
53
-
-
1942423619
-
MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology
-
53 Feig M, Karanicolas J, Brooks CL, III. MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 2004 ; 22: 377–395. http://mmtsb.scripps.edu.
-
(2004)
J Mol Graph Model
, vol.22
, pp. 377-395
-
-
Feig, M1
Karanicolas, J2
Brooks, CL3
-
54
-
-
0042511005
-
A graph theory algorithm for protein side‐chain prediction
-
54 Canutescu AA, Shelenkov AA, Dunbrack RL, Jr. A graph theory algorithm for protein side‐chain prediction. Protein Sci 2003 ; 12: 2001–2014.
-
(2003)
Protein Sci
, vol.12
, pp. 2001-2014
-
-
Canutescu, AA1
Shelenkov, AA2
Dunbrack, RL3
-
55
-
-
11644261806
-
Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function
-
55 Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J Comput Chem 1998 ; 19: 1639–1662.
-
(1998)
J Comput Chem
, vol.19
, pp. 1639-1662
-
-
Morris, GM1
Goodsell, DS2
Halliday, RS3
Huey, R4
Hart, WE5
Belew, RK6
Olson, AJ7
-
56
-
-
0025135112
-
Automated docking of substrates to proteins by simulated annealing
-
56 Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins: Struct Funct Genet 1990 ; 8: 195–202.
-
(1990)
Proteins: Struct Funct Genet
, vol.8
, pp. 195-202
-
-
Goodsell, DS1
Olson, AJ2
|