메뉴 건너뛰기




Volumn 10, Issue 2, 2001, Pages 230-248

On the relationship between markov chain monte carlo methods for model uncertainty

Author keywords

Bayes; Jump diffusion; Model selection; Reversible jump; Variable selection

Indexed keywords


EID: 0035591051     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1198/10618600152627924     Document Type: Article
Times cited : (243)

References (44)
  • 1
    • 7444226742 scopus 로고    scopus 로고
    • A Reversible Jump MCMC Sampler for Bayesian Analysis of ARMA Time Series
    • Universita Roma: La Sapienza
    • Barbieri, M., and O’Hagan, A. (1996), “A Reversible Jump MCMC Sampler for Bayesian Analysis of ARMA Time Series,” Technical Report, Universita Roma: La Sapienza.
    • (1996) Technical Report
    • Barbieri, M.1    O’hagan, A.2
  • 2
    • 0031625529 scopus 로고    scopus 로고
    • Unsupervised Image Segmentation
    • Barker, S., andRayner, P. J. W. (1998), “Unsupervised Image Segmentation,”in Proceedings of IEEE International Conference on Acoustics, Speech and SignalProcessing (vol. 5), pp. 2757-2760.
    • (1998) Proceedings of IEEE International , vol.5 , pp. 2757-2760
    • Barker, S.1    Rayner, P.J.W.2
  • 3
    • 0002061759 scopus 로고    scopus 로고
    • Bayesian Estimation of an Autoregressive Model Using Markov Chain Monte Carlo
    • Barnett, G., Kohn, R., and Sheather, S. (1996), “Bayesian Estimation of an Autoregressive Model Using Markov Chain Monte Carlo,” Journal of Econometrics, 74, 237-254.
    • (1996) Journal of Econometrics , vol.74 , pp. 237-254
    • Barnett, G.1    Kohn, R.2    Sheather, S.3
  • 4
    • 0001143218 scopus 로고
    • A Candidates Formula-A Curious Result in Bayesian Prediction
    • Besag, J. (1989), “A Candidate’s Formula-A Curious Result in Bayesian Prediction,” Biometrika, 76, 183.
    • (1989) Biometrika , vol.76 , pp. 183
    • Besag, J.1
  • 5
    • 0141477205 scopus 로고    scopus 로고
    • Discussion of “Bayesian Analysis ofMixtures With an Unknown Number of Components
    • by S. Richardson and P. Green
    • Besag, J. (1997), Discussion of “Bayesian Analysis ofMixtures With an Unknown Number of Components,”by S. Richardson and P. Green, Journal of the Royal StatisticalSociety, Series B, 59, 774.
    • (1997) Journal Of The Royal Statisticalsociety, Series B , vol.59 , pp. 774
    • Besag, J.1
  • 7
    • 0000586792 scopus 로고    scopus 로고
    • Convergence Assessment for Reversible Jump MCMC Simulations
    • J. Bernardo, J. Berger, A. Dawid, and A. Smith, Oxford: Oxford University Press
    • Brooks, S. P., and Giudici, P. (1999), “Convergence Assessment for Reversible Jump MCMC Simulations,” in Bayesian Statistics 6, eds. J. Bernardo, J. Berger, A. Dawid, and A. Smith, Oxford: Oxford University Press, pp. 733-742.
    • (1999) Bayesian Statistics , vol.6 , pp. 733-742
    • Brooks, S.P.1    Giudici, P.2
  • 9
    • 0000761439 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo in Conditionally Gaussian State Space Models
    • Carter, C., and Kohn, R. (1996), “Markov Chain Monte Carlo in Conditionally Gaussian State Space Models,” Biometrika, 83, 589-601.
    • (1996) Biometrika , vol.83 , pp. 589-601
    • Carter, C.1    Kohn, R.2
  • 10
  • 11
    • 0000911137 scopus 로고    scopus 로고
    • Analysis o fMultivariate Probit Models
    • Chib, S., and Greenberg, E. (1998), “Analysis o fMultivariate Probit Models,” Biometrika, 85, 347-361.
    • (1998) Biometrika , vol.85 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 13
    • 0343198394 scopus 로고    scopus 로고
    • On Bayesian Model and Variable Selection Using MCMC
    • Department of Statistics, Athens University of Economy and Business
    • Dellaportas, P., Forster, J., and Ntzoufras, I. (1997), “On Bayesian Model and Variable Selection Using MCMC,” Technical Report, Department of Statistics, Athens University of Economy and Business.
    • (1997) Technical Report
    • Dellaportas, P.1    Forster, J.2    Ntzoufras, I.3
  • 16
    • 84972492387 scopus 로고
    • Inference FromIterativeSimulationsUsing MultipleSequences
    • Gelman, A., andRubin, D. (1992), “Inference FromIterativeSimulationsUsing MultipleSequences,” Statistical Science, 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 17
  • 19
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian Variable Selection
    • George, E. I., and McCulloch, R. E. (1996), “Approaches for Bayesian Variable Selection,” StatisticaSinica, 7, 339-374.
    • (1996) Statisticasinica , vol.7 , pp. 339-374
    • George, E.I.1    Mc Culloch, R.E.2
  • 20
    • 0000647838 scopus 로고    scopus 로고
    • Variable Selection and Model Comparison in Regression
    • J. Bernardo, J. Berger, A. Dawid, and A. Smith, Oxford: Oxford University Press
    • Geweke, J. (1996), “Variable Selection and Model Comparison in Regression,” in Bayesian Statistics V, eds. J. Bernardo, J. Berger, A. Dawid, and A. Smith, Oxford: Oxford University Press, pp. 609-620.
    • (1996) Bayesian Statistics V , pp. 609-620
    • Geweke, J.1
  • 21
    • 0031493695 scopus 로고    scopus 로고
    • Bayesian Enhancement of Speech and Audio Signals Which can be Modelled as ARMA Processes
    • Godsill, S. J. (1997), “Bayesian Enhancement of Speech and Audio Signals Which can be Modelled as ARMA Processes,” International Statistical Review, 65, 1-21.
    • (1997) International Statistical Review , vol.65 , pp. 1-21
    • Godsill, S.J.1
  • 22
    • 0040899812 scopus 로고    scopus 로고
    • Robust Treatment of Impulsive Noise in Speech and Audio Signals
    • ds. J. Berger, B. Betro, E. Moreno, L. Pericchi, F. Ruggeri, G. Salinetti, and L. Wasserman, Hayward, CA: IMS, pp
    • Godsill, S. J., and Rayner, P. J. W. (1996), “Robust Treatment of Impulsive Noise in Speech and Audio Signals,” in Bayesian Robustness-Proceedings of the Workshop on Bayesian Robustness (vol. 29), eds. J. Berger, B. Betro, E. Moreno, L. Pericchi, F. Ruggeri, G. Salinetti, and L. Wasserman, Hayward, CA: IMS, pp. 331-342.
    • (1996) Bayesian Robustness-Proceedings of the Workshop on Bayesian Robustness , vol.29 , pp. 331-342
    • Godsill, S.J.1    Rayner, P.J.W.2
  • 23
    • 0032122676 scopus 로고    scopus 로고
    • Robust Reconstruction and Analysis of Autoregressive Signals in Impulsive Noise Using the Gibbs Sampler
    • Godsill, S. J., and Rayner, P. J. W. (1998), “Robust Reconstruction and Analysis of Autoregressive Signals in Impulsive Noise Using the Gibbs Sampler,” IEEE Transactionson Speech andAudioProcessing, 6, 352-372.
    • (1998) IEEE Transactionson Speech Andaudioprocessing , vol.6 , pp. 352-372
    • Godsill, S.J.1    Rayner, P.J.W.2
  • 24
    • 85011490429 scopus 로고    scopus 로고
    • Carlin and Chib do not Need to Sample FromPseudo-Priors
    • Green, P., and O’Hagan, A. (1997), “Carlin and Chib do not Need to Sample FromPseudo-Priors,” unpublished report.
    • (1997) Unpublished Report
    • Green, P.1    O’hagan, A.2
  • 25
    • 77956889087 scopus 로고
    • Reversible Jump Markov-Chain Monte Carlo Computation and Bayesian Model Determina tion
    • Green, P. J. (1995), “Reversible Jump Markov-Chain Monte Carlo Computation and Bayesian Model Determina tion,” Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 26
    • 33747776960 scopus 로고
    • Jump-DiffusionProcesses for Abduction and RecognitionofBiological Shapes
    • Electronic Signals and Systems Research Laboratory, Washington University
    • Grenander, U., and Miller, M. I. (1991), “Jump-DiffusionProcesses for Abduction and RecognitionofBiological Shapes,” Technical Report, Electronic Signals and Systems Research Laboratory, Washington University.
    • (1991) Technical Report
    • Grenander, U.1    Miller, M.I.2
  • 28
    • 77956890234 scopus 로고
    • Monte Carlo Sampling Methods Using Markov Chains and Their Applications
    • Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their Applications,” Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 29
    • 0030194062 scopus 로고    scopus 로고
    • A Method for Simultaneous Variable Selection and Outlier Identification in Linear-Regression
    • Hoeting, J., Raftery, A., and Madigan, D. (1996), “A Method for Simultaneous Variable Selection and Outlier Identification in Linear-Regression,” ComputationalStatistics and Data Analysis, 22, 251-270.
    • (1996) Computationalstatistics and Data Analysis , vol.22 , pp. 251-270
    • Hoeting, J.1    Raftery, A.2    Madigan, D.3
  • 30
    • 0033476979 scopus 로고    scopus 로고
    • Priors and Component Structures in Autoregressive Time Series Models
    • Huerta, G., and West, M. (1999), “Priors and Component Structures in Autoregressive Time Series Models,” Journal of the RoyalStatisticalSociety, Series B, 61, 881-899.
    • (1999) Journal of the Royalstatisticalsociety, Series B , vol.61 , pp. 881-899
    • Huerta, G.1    West, M.2
  • 31
    • 0011373760 scopus 로고    scopus 로고
    • Variable Selection for Regression Models
    • Kuo, L., and Mallick, B. (1998), “Variable Selection for Regression Models,” Sankhya, Series B, 60, 65-81.
    • (1998) Sankhya, Series B , vol.60 , pp. 65-81
    • Kuo, L.1    Mallick, B.2
  • 32
    • 21844520724 scopus 로고
    • Bayesian Graphical Models for Discrete Data
    • Madigan, D., and York, J. (1995), “Bayesian Graphical Models for Discrete Data,” International Statistical Review, 63, 215-232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 33
    • 84981454150 scopus 로고
    • Bayesian Analysis of Autoregressive Time Series via the Gibbs Sampler
    • McCulloch, R. E., and Tsay, R. S. (1994), “Bayesian Analysis of Autoregressive Time Series via the Gibbs Sampler,” Journalof Time Series Analysis, 15, 235-250.
    • (1994) Journalof Time Series Analysis , vol.15 , pp. 235-250
    • Mc Culloch, R.E.1    Tsay, R.S.2
  • 37
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis Testing and Model Selection
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman and Hall
    • Raftery, A. (1996), “Hypothesis Testing and Model Selection,” in Markov Chain Monte Carlo in Practice, eds. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman and Hall, pp. 163-187.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 163-187
    • Raftery, A.1
  • 43
    • 0034825038 scopus 로고    scopus 로고
    • MCMC Methods for Restoration of Nonlinearly Distorted Autoregressive Signals
    • Troughton, P., and Godsill, S. J. (2001), “MCMC Methods for Restoration of Nonlinearly Distorted Autoregressive Signals,” Signal Processing, 81, 83-97.
    • (2001) Signal Processing , vol.81 , pp. 83-97
    • Troughton, P.1    Godsill, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.