메뉴 건너뛰기




Volumn 25, Issue 4, 1997, Pages 1563-1594

On Monte Carlo methods for estimating ratios of normalizing constants

Author keywords

Bayesian computation; Bridge sampling; Gibbs sampling; Importance sampling; Markov chain Monte Carlo; Metropolis Hastings algorithm; Path sampling; Ratio importance sampling

Indexed keywords


EID: 0031527297     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1031594732     Document Type: Article
Times cited : (96)

References (23)
  • 1
    • 0000298252 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for model selection and prediction
    • BERGER, J. O. and PERICCHI, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91 109-122.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 109-122
    • Berger, J.O.1    Pericchi, L.R.2
  • 3
    • 21844506388 scopus 로고
    • Importance-weighted marginal Bayesian posterior density estimation
    • CHEN, M.-H. (1994b). Importance-weighted marginal Bayesian posterior density estimation. J. Amer. Statist. Assoc. 89 818-824.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 818-824
    • Chen, M.-H.1
  • 4
    • 0040211214 scopus 로고
    • Performance of the Gibbs, hit-and-run, and Metropolis samplers
    • CHEN, M.-H. and SCHMEISER, B. W. (1993). Performance of the Gibbs, hit-and-run, and Metropolis samplers. J. Comput. Graph. Statist. 2 251-272.
    • (1993) J. Comput. Graph. Statist. , vol.2 , pp. 251-272
    • Chen, M.-H.1    Schmeiser, B.W.2
  • 5
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • CHIB, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90 1313-1321.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 7
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 8
    • 84950453504 scopus 로고
    • Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling
    • GELFAND, A. E., SMITH, A. F. M. and LEE, T. M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Amer. Statist. Assoc. 87 523-532.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 523-532
    • Gelfand, A.E.1    Smith, A.F.M.2    Lee, T.M.3
  • 12
    • 0001667705 scopus 로고
    • Bayesian inference in econometrics models using Monte Carlo integration
    • GEWEKE, J. (1989). Bayesian inference in econometrics models using Monte Carlo integration. Econometrica 57 1317-1340.
    • (1989) Econometrica , vol.57 , pp. 1317-1340
    • Geweke, J.1
  • 13
    • 0003452470 scopus 로고
    • Technical Report 532, Federal Reserve Bank of Minneapolis and Univ. Minnesota
    • GEWEKE, J. (1994). Bayesian comparison of econometric models. Technical Report 532, Federal Reserve Bank of Minneapolis and Univ. Minnesota.
    • (1994) Bayesian Comparison of Econometric Models
    • Geweke, J.1
  • 15
    • 0000051109 scopus 로고
    • Discussion of "Constrained Monte Carlo maximum likelihood for dependent data,"
    • by C. J. Geyer and E. A. Thompson.
    • GREEN, P. J. (1992). Discussion of "Constrained Monte Carlo maximum likelihood for dependent data," by C. J. Geyer and E. A. Thompson. J. Roy. Statist. Soc. Ser. B 54 657-699.
    • (1992) J. Roy. Statist. Soc. Ser. B , vol.54 , pp. 657-699
    • Green, P.J.1
  • 16
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • HASTINGS, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 17
    • 0030343232 scopus 로고    scopus 로고
    • A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs
    • HE, X. and SHAO, Q. M. (1996). A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs. Ann. Statist. 24 2608-2630.
    • (1996) Ann. Statist. , vol.24 , pp. 2608-2630
    • He, X.1    Shao, Q.M.2
  • 18
    • 0001213309 scopus 로고
    • Rate of convergence of one- and two-step M-estimators with applications to maximum likelihood and Pitman estimators
    • JANSSEN, P., JURECKOVA, J. and VERAVERBEKE, N. (1985). Rate of convergence of one- and two-step M-estimators with applications to maximum likelihood and Pitman estimators. Ann. Statist. 13 1222-1229.
    • (1985) Ann. Statist. , vol.13 , pp. 1222-1229
    • Janssen, P.1    Jureckova, J.2    Veraverbeke, N.3
  • 19
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • MENG, X. L. and WONG, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statist. Sinica 6 831-860.
    • (1996) Statist. Sinica , vol.6 , pp. 831-860
    • Meng, X.L.1    Wong, W.H.2
  • 22
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528-549.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-549
    • Tanner, M.A.1    Wong, W.H.2
  • 23
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1762.
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.