메뉴 건너뛰기




Volumn 87, Issue 4, 2000, Pages 731-747

Calibration and empirical bayes variable selection

Author keywords

AIC; BIC; Cp; Conditional likelihood; Hierarchical model; Marginal likelihood; Model selection; RIC; Risk; Selection bias; Shrinkage estimation; Wavelets

Indexed keywords


EID: 0001729472     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/87.4.731     Document Type: Article
Times cited : (368)

References (33)
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Ed. B. N. Petrov and F. Csaki, Budapest: Akademia Kiado
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, Ed. B. N. Petrov and F. Csaki, pp. 267-81. Budapest: Akademia Kiado.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • BENJAMINI, Y. & HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289-300.
    • (1995) J. R. Statist. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 0001809736 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for linear models
    • Ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford: Oxford University Press
    • BERGER, J. O. & PERICCHI, L. R. (1996). The intrinsic Bayes factor for linear models. In Bayesian Statistics 5, Ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, pp. 25-44. Oxford: Oxford University Press.
    • (1996) Bayesian Statistics 5 , pp. 25-44
    • Berger, J.O.1    Pericchi, L.R.2
  • 5
    • 0001587464 scopus 로고
    • The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
    • BREIMAN, L. (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Am. Statist. Assoc. 87, 738-54.
    • (1992) J. Am. Statist. Assoc. , vol.87 , pp. 738-754
    • Breiman, L.1
  • 7
    • 0001477056 scopus 로고    scopus 로고
    • Empirical Bayes estimation in wavelet nonparametric regression
    • Ed. P. Muller and B. Vidakovic, New York: Springer-Verlag
    • CLYDE, M. & GEORGE, E. I. (1999). Empirical Bayes estimation in wavelet nonparametric regression. In Bayesian Inference in Wavelet Based Models, Ed. P. Muller and B. Vidakovic, pp. 309-22. New York: Springer-Verlag.
    • (1999) Bayesian Inference in Wavelet Based Models , pp. 309-322
    • Clyde, M.1    George, E.I.2
  • 8
    • 0034354040 scopus 로고    scopus 로고
    • Flexible empirical Bayes estimation for wavelets
    • To appear
    • CLYDE, M. & GEORGE, E. I. (2000). Flexible empirical Bayes estimation for wavelets. J. R. Statist. Soc. B 62. To appear.
    • (2000) J. R. Statist. Soc. B , vol.62
    • Clyde, M.1    George, E.I.2
  • 9
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage subset selection in wavelets
    • CLYDE, M., PARMIGIANI, G. & VIDAKOVIC, B. (1998). Multiple shrinkage subset selection in wavelets. Biometrika 85, 391-402.
    • (1998) Biometrika , vol.85 , pp. 391-402
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 10
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • DONOHO, D. L. & JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425-56.
    • (1994) Biometrika , vol.81 , pp. 425-456
    • Donoho, D.L.1    Johnstone, I.M.2
  • 12
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • FOSTER, D. P. & GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22, 1947-75.
    • (1994) Ann. Statist. , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 14
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • FURNIVAL, G. M. & WILSON, R. W. (1974). Regression by leaps and bounds. Technometrics 16, 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson, R.W.2
  • 15
    • 0030296512 scopus 로고    scopus 로고
    • Quantifying and using expert opinion for variable-selection problems in regression (with Discussion)
    • GARTHWAITE, P. H. & DICKEY, J. M. (1996). Quantifying and using expert opinion for variable-selection problems in regression (with Discussion). Chemomet. Intel. Lab. Syst. 35, 1-34.
    • (1996) Chemomet. Intel. Lab. Syst. , vol.35 , pp. 1-34
    • Garthwaite, P.H.1    Dickey, J.M.2
  • 18
    • 0004581641 scopus 로고
    • Stochastic search variable selection
    • Ed. W. R. Gilks, S. Richardson and D. J. Spiegelhalter, London: Chapman and Hall
    • GEORGE, E. I. & MCCULLOCH, R. E. (1995). Stochastic search variable selection. In Practical Markov Chain Monte Carlo in Practice, Ed. W. R. Gilks, S. Richardson and D. J. Spiegelhalter, pp. 203-14. London: Chapman and Hall.
    • (1995) Practical Markov Chain Monte Carlo in Practice , pp. 203-214
    • George, E.I.1    Mcculloch, R.E.2
  • 19
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • GEORGE, E. I. & MCCULLOCH, R. E. (1997). Approaches for Bayesian variable selection. Statist. Sinica 7, 339-73.
    • (1997) Statist. Sinica , vol.7 , pp. 339-373
    • George, E.I.1    Mcculloch, R.E.2
  • 21
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • KASS, R. E. & WASSERMAN, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Am. Statist. Assoc. 90, 928-34.
    • (1995) J. Am. Statist. Assoc. , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 22
    • 0003414592 scopus 로고
    • 3rd ed. Oxford: Oxford University Press
    • JEFFREYS, H. (1961). Theory of Probability, 3rd ed. Oxford: Oxford University Press.
    • (1961) Theory of Probability
    • Jeffreys, H.1
  • 24
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression (with Discussion)
    • MITCHELL, T. J. & BEAUCHAMP, J. J. (1988). Bayesian variable selection in linear regression (with Discussion). J. Am. Statist. Assoc. 83, 1023-36.
    • (1988) J. Am. Statist. Assoc. , vol.83 , pp. 1023-1036
    • Mitchell, T.J.1    Beauchamp, J.J.2
  • 25
    • 0001857092 scopus 로고
    • Fractional Bayes factors for model comparison (with Discussion)
    • O'HAGAN, A. (1995). Fractional Bayes factors for model comparison (with Discussion). J. R. Statist. Soc. B 57, 99-138.
    • (1995) J. R. Statist. Soc. B , vol.57 , pp. 99-138
    • O'Hagan, A.1
  • 26
    • 0002648792 scopus 로고    scopus 로고
    • The Schwarz criterion and related methods for the normal linear model
    • PAULER, D. (1998). The Schwarz criterion and related methods for the normal linear model. Biometrika 85, 13-27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.1
  • 27
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • RAFTERY, A. E., MADIGAN, D. M. & HOETING, J. (1997). Bayesian model averaging for linear regression models. J. Am. Statist. Assoc. 92, 179-91.
    • (1997) J. Am. Statist. Assoc. , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.M.2    Hoeting, J.3
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-4.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 29
    • 0000134224 scopus 로고
    • Bayes factors and choice criteria for linear models
    • SMITH, A. F. M. & SPIEGELHALTER, D. J. (1980). Bayes factors and choice criteria for linear models. J. R. Statist. Soc. B 42, 213-20.
    • (1980) J. R. Statist. Soc. B , vol.42 , pp. 213-220
    • Smith, A.F.M.1    Spiegelhalter, D.J.2
  • 30
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • SMITH, M. & KOHN, R. (1996). Nonparametric regression using Bayesian variable selection. J. Economet. 75, 317-44.
    • (1996) J. Economet. , vol.75 , pp. 317-344
    • Smith, M.1    Kohn, R.2
  • 31
    • 0000169918 scopus 로고
    • Estimation of a multivariate normal mean
    • STEIN, C. (1981). Estimation of a multivariate normal mean. Ann. Statist. 9, 1135-51.
    • (1981) Ann. Statist. , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 32
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • Ed. P. K. Goel and A. Zellner, Amsterdam: North-Holland
    • ZELLNER, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finietti, Ed. P. K. Goel and A. Zellner, pp. 233-43. Amsterdam: North-Holland.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finietti , pp. 233-243
    • Zellner, A.1
  • 33
    • 0039026915 scopus 로고
    • Posterior odds ratios for selected regression hypotheses
    • Ed. J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, Valencia: University of Valencia Press
    • ZELLNER, A. & SIOW, A. (1980). Posterior odds ratios for selected regression hypotheses. In Bayesian Statistics, Proceedings of the First International Meeting Held in Valencia (Spain), Ed. J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, pp. 585-603. Valencia: University of Valencia Press.
    • (1980) Bayesian Statistics, Proceedings of the First International Meeting Held in Valencia (Spain) , pp. 585-603
    • Zellner, A.1    Siow, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.