메뉴 건너뛰기




Volumn 63, Issue , 2007, Pages 261-316

Towards comprehensive foundations of computational intelligence

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34250004563     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-71984-7_11     Document Type: Article
Times cited : (35)

References (185)
  • 2
    • 0004273836 scopus 로고
    • Frederick Ungar, New York, Reprinted: Dover Publications, New York
    • N.I. Achieser. Theory of Approximation. Frederick Ungar, New York, 1956. Reprinted: Dover Publications, New York 1992.
    • (1956) Theory of Approximation
    • Achieser, N.I.1
  • 6
    • 0033556929 scopus 로고    scopus 로고
    • Boosted mixture of experts: An ensemble learning scheme
    • R. Avnimelech and N. Intrator. Boosted mixture of experts: An ensemble learning scheme. Neural Computation, 11:483-497, 1999.
    • (1999) Neural Computation , vol.11 , pp. 483-497
    • Avnimelech, R.1    Intrator, N.2
  • 8
    • 0037334364 scopus 로고    scopus 로고
    • The pdf projection theorem and the class-specific method
    • P.M. Baggenstoss. The pdf projection theorem and the class-specific method. IEEE Transactions on Signal Processing, 51:672-668, 2003.
    • (2003) IEEE Transactions on Signal Processing , vol.51 , pp. 672-668
    • Baggenstoss, P.M.1
  • 9
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. Journal of Machine Learning Research, 4:83-99, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 10
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine learning, 36:105-142, 1999.
    • (1999) Machine learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 13
    • 0010321102 scopus 로고    scopus 로고
    • Measurements of membership functions: Theoretical and empirical work
    • D. Dubois and H. Prade, editors, Kluver, Boston
    • T. Bilgiç and I.B. Türkşen. Measurements of membership functions: Theoretical and empirical work. In D. Dubois and H. Prade, editors, Fundamentals of Fuzzy Sets, Vol. 1, pages 195-232. Kluver, Boston, 2000.
    • (2000) Fundamentals of Fuzzy Sets , vol.1 , pp. 195-232
    • Bilgiç, T.1    Türkşen, I.B.2
  • 17
    • 0003330326 scopus 로고    scopus 로고
    • Bias-variance, regularization, instability and stabilization
    • C.M. Bishop, editor, Springer-Verlag
    • L. Breiman. Bias-variance, regularization, instability and stabilization. In C.M. Bishop, editor, Neural Networks and Machine Learning, pages 27-56. Springer-Verlag, 1998.
    • (1998) Neural Networks and Machine Learning , pp. 27-56
    • Breiman, L.1
  • 21
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19:1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 22
    • 0033260774 scopus 로고    scopus 로고
    • The search for simplicity: A fundamental cognitive principle?
    • N. Chater. The search for simplicity: A fundamental cognitive principle? Quarterly Journal of Experimental Psychology, 52A:273-302, 1999.
    • (1999) Quarterly Journal of Experimental Psychology , vol.52 A , pp. 273-302
    • Chater, N.1
  • 24
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • T.M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14:326-334, 1965.
    • (1965) IEEE Transactions on Electronic Computers , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 25
    • 0000171982 scopus 로고    scopus 로고
    • An attractor model of lexical conceptual processing: Simulating semantic priming
    • G.S. Cree, K. McRae, and C. McNorgan. An attractor model of lexical conceptual processing: Simulating semantic priming. Cognitive Science 23(3):371-414, 1999.
    • (1999) Cognitive Science , vol.23 , Issue.3 , pp. 371-414
    • Cree, G.S.1    McRae, K.2    McNorgan, C.3
  • 26
    • 0031537711 scopus 로고    scopus 로고
    • Application of spreading activation techniques in information retrieval
    • F. Crestani. Application of spreading activation techniques in information retrieval. Artifical Intelligence Review, 11(6):453-482, 1997.
    • (1997) Artifical Intelligence Review , vol.11 , Issue.6 , pp. 453-482
    • Crestani, F.1
  • 28
    • 0030297038 scopus 로고    scopus 로고
    • Varieties of helmholtz machines
    • P. Dayan and G.E. Hinton. Varieties of helmholtz machines. Neural Networks, 9:1385-1403, 1996.
    • (1996) Neural Networks , vol.9 , pp. 1385-1403
    • Dayan, P.1    Hinton, G.E.2
  • 31
    • 0037461757 scopus 로고    scopus 로고
    • Basis functions for object-centered representations
    • S. Deneve and A. Pouget. Basis functions for object-centered representations. Neuron, 37:347-359, 2003.
    • (2003) Neuron , vol.37 , pp. 347-359
    • Deneve, S.1    Pouget, A.2
  • 34
    • 1642295585 scopus 로고    scopus 로고
    • Platonic model of mind as an approximation to neurodynamics
    • S i. Amari and N. Kasabov, editors, Springer
    • W. Duch. Platonic model of mind as an approximation to neurodynamics. In S i. Amari and N. Kasabov, editors, Brain-like computing and intelligent information systems, pages 491-512. Springer, 1997.
    • (1997) Brain-like computing and intelligent information systems , pp. 491-512
    • Duch, W.1
  • 35
    • 0034562759 scopus 로고    scopus 로고
    • Similarity based methods: A general framework for classification, approximation and association
    • W. Duch. Similarity based methods: A general framework for classification, approximation and association. Control and Cybernetics, 29:937-968, 2000.
    • (2000) Control and Cybernetics , vol.29 , pp. 937-968
    • Duch, W.1
  • 36
    • 0141459861 scopus 로고    scopus 로고
    • Coloring black boxes: Visualization of neural network decisions
    • IEEE Press
    • W. Duch. Coloring black boxes: Visualization of neural network decisions. In Int. Joint Conf. on Neural Networks, Portland, Oregon volume I, pages 1735-1740. IEEE Press, 2003.
    • (2003) Int. Joint Conf. on Neural Networks, Portland, Oregon , vol.1 , pp. 1735-1740
    • Duch, W.1
  • 37
    • 13844298057 scopus 로고    scopus 로고
    • Uncertainty of data, fuzzy membership functions, and multilayer perceptrons
    • W. Duch. Uncertainty of data, fuzzy membership functions, and multilayer perceptrons. IEEE Transactions on Neural Networks, 16:10-23, 2005.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , pp. 10-23
    • Duch, W.1
  • 39
    • 34249988492 scopus 로고    scopus 로고
    • W. Duch. Filter methods. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature extraction, foundations and applications, pages 89-118. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2006.
    • W. Duch. Filter methods. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature extraction, foundations and applications, pages 89-118. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2006.
  • 43
    • 0347920387 scopus 로고    scopus 로고
    • Classification, association and pattern completion using neural similarity based methods
    • W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, association and pattern completion using neural similarity based methods. Applied Mathemathics and Computer Science, 10:101-120, 2000.
    • (2000) Applied Mathemathics and Computer Science , vol.10 , pp. 101-120
    • Duch, W.1    Adamczak, R.2    Diercksen, G.H.F.3
  • 45
    • 34249986070 scopus 로고    scopus 로고
    • Constructive density estimation network based on several different separable transfer functions
    • Bruges, Belgium, Apr
    • W. Duch, R. Adamczak, and G.H.F. Diercksen. Constructive density estimation network based on several different separable transfer functions. In 9th European Symposium on Artificial Neural Networks pages 107-112, Bruges, Belgium, Apr 2001.
    • (2001) 9th European Symposium on Artificial Neural Networks , pp. 107-112
    • Duch, W.1    Adamczak, R.2    Diercksen, G.H.F.3
  • 47
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • W. Duch, R. Adamczak, and K. Gra̧bczewski. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks, 12:277-306, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Gra̧bczewski, K.3
  • 48
    • 33746265290 scopus 로고    scopus 로고
    • Fuzzy rule-based systems derived from similarity to prototypes
    • W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to prototypes. Lecture Notes in Computer Science, 3316:912-917, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3316 , pp. 912-917
    • Duch, W.1    Blachnik, M.2
  • 49
    • 33746265290 scopus 로고    scopus 로고
    • W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to prototypes. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and S.K. Parui, editors, Lecture Notes in Computer Science, 3316, pages 912-917. Physica Verlag, Springer, New York, 2004.
    • W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to prototypes. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and S.K. Parui, editors, Lecture Notes in Computer Science, volume 3316, pages 912-917. Physica Verlag, Springer, New York, 2004.
  • 50
    • 0002539648 scopus 로고
    • Feature space mapping as a universal adaptive system
    • W. Duch and G.H.F. Diercksen. Feature space mapping as a universal adaptive system. Computer Physics Communications, 87:341-371, 1995.
    • (1995) Computer Physics Communications , vol.87 , pp. 341-371
    • Duch, W.1    Diercksen, G.H.F.2
  • 51
    • 0036075373 scopus 로고    scopus 로고
    • W. Duch and K. Gr,abczewski. Heterogeneous adaptive systems. In IEEE World Congress on Computational Intelligence, pages 524-529. IEEE Press, Honolulu, May 2002.
    • W. Duch and K. Gr,abczewski. Heterogeneous adaptive systems. In IEEE World Congress on Computational Intelligence, pages 524-529. IEEE Press, Honolulu, May 2002.
  • 52
    • 85131706045 scopus 로고    scopus 로고
    • W. Duch and K. Grudziński. Search and global minimization in similarity-based methods. In International Joint Conference on Neural Networks, page Paper 742, Washington D.C., 1999. IEEE Press.
    • W. Duch and K. Grudziński. Search and global minimization in similarity-based methods. In International Joint Conference on Neural Networks, page Paper 742, Washington D.C., 1999. IEEE Press.
  • 53
    • 34249984399 scopus 로고    scopus 로고
    • W. Duch and K. Grudziński. Meta-learning via search combined with parameter optimization. In L. Rutkowski and J. Kacprzyk, editors, Advances in Soft Computing, pages 13-22. Physica Verlag, Springer, New York, 2002.
    • W. Duch and K. Grudziński. Meta-learning via search combined with parameter optimization. In L. Rutkowski and J. Kacprzyk, editors, Advances in Soft Computing, pages 13-22. Physica Verlag, Springer, New York, 2002.
  • 54
    • 34249988183 scopus 로고    scopus 로고
    • W. Duch and L. Itert. Competent undemocratic committees. In L. Rutkowski and J. Kacprzyk, editors, Neural Networks and Soft Computing, pages 412-417. Physica Verlag, Springer, 2002.
    • W. Duch and L. Itert. Competent undemocratic committees. In L. Rutkowski and J. Kacprzyk, editors, Neural Networks and Soft Computing, pages 412-417. Physica Verlag, Springer, 2002.
  • 55
    • 34250003455 scopus 로고    scopus 로고
    • W. Duch and L. Itert. Committees of undemocratic competent models. In L. Rutkowski and J. Kacprzyk, editors, Proc. of Int. Conf. on Artificial Neural Networks (ICANN), Istanbul, pages 33-36, 2003.
    • W. Duch and L. Itert. Committees of undemocratic competent models. In L. Rutkowski and J. Kacprzyk, editors, Proc. of Int. Conf. on Artificial Neural Networks (ICANN), Istanbul, pages 33-36, 2003.
  • 57
  • 59
    • 0037956674 scopus 로고    scopus 로고
    • Transfer functions: Hidden possibilities for better neural networks
    • Brusells, Belgium, De-facto publications
    • W. Duch and N. Jankowski. Transfer functions: Hidden possibilities for better neural networks. In 9th European Symposium on Artificial Neural Networks, pages 81-94, Brusells, Belgium, 2001. De-facto publications.
    • (2001) 9th European Symposium on Artificial Neural Networks , pp. 81-94
    • Duch, W.1    Jankowski, N.2
  • 61
    • 34250026429 scopus 로고    scopus 로고
    • W. Duch and J. Mandziuk. Quo vadis computational intelligence? In P. Sincak, J. Vascak, and K. Hirota, editors, Machine Intelligence: Quo Vadis?, 21, pages 3-28. World Scientific, Advances in Fuzzy Systems - Applications and Theory, 2004.
    • W. Duch and J. Mandziuk. Quo vadis computational intelligence? In P. Sincak, J. Vascak, and K. Hirota, editors, Machine Intelligence: Quo Vadis?, volume 21, pages 3-28. World Scientific, Advances in Fuzzy Systems - Applications and Theory, 2004.
  • 62
    • 21244495584 scopus 로고    scopus 로고
    • Computational intelligence methods for understanding of data
    • W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for understanding of data. Proceedings of the IEEE, 92(5):771-805, 2004.
    • (2004) Proceedings of the IEEE , vol.92 , Issue.5 , pp. 771-805
    • Duch, W.1    Setiono, R.2    Zurada, J.3
  • 64
    • 0042764644 scopus 로고
    • R.S. Michalski ed, Kluwer Academic Publishers
    • R.S. Michalski (ed). Multistrategy Learning. Kluwer Academic Publishers, 1993.
    • (1993) Multistrategy Learning
  • 65
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D.S. Touretzky, editor, Morgan Kaufmann
    • S.E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 524-532. Morgan Kaufmann, 1990.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 70
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition, 34:179-181, 2001.
    • (2001) Pattern Recognition , vol.34 , pp. 179-181
    • Giacinto, G.1    Roli, F.2
  • 72
    • 33749322782 scopus 로고    scopus 로고
    • Introduction to the special issue on meta-learning
    • Ch. Giraud-Carrier, R. Vilalta, and P. Brazdil. Introduction to the special issue on meta-learning. Machine Learning, 54:197-194, 2004.
    • (2004) Machine Learning , vol.54 , pp. 197-194
    • Giraud-Carrier, C.1    Vilalta, R.2    Brazdil, P.3
  • 74
    • 34249993489 scopus 로고    scopus 로고
    • What is a structural representation? fifth variation
    • TR05-175, Faculty of Computer Science, University of New Brunswick, Canada
    • L. Goldfarb and D. Gay. What is a structural representation? fifth variation. Technical Report Technical Report TR05-175, Faculty of Computer Science, University of New Brunswick, Canada, 2005.
    • (2005) Technical Report Technical Report
    • Goldfarb, L.1    Gay, D.2
  • 75
    • 34249994588 scopus 로고    scopus 로고
    • What is a structural representation? a proposal for a representational formalism
    • submitted
    • L. Goldfarb, D. Gay, O. Golubitsky, and D. Korkin. What is a structural representation? a proposal for a representational formalism. Pattern Recognition, (submitted), 2006.
    • (2006) Pattern Recognition
    • Goldfarb, L.1    Gay, D.2    Golubitsky, O.3    Korkin, D.4
  • 81
    • 9444268167 scopus 로고    scopus 로고
    • Comparison of instance selection algorithms. II. results and comments
    • M. Grochowski and N. Jankowski. Comparison of instance selection algorithms. II. results and comments. Lecture Notes in Computer Science, 3070:580-585, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3070 , pp. 580-585
    • Grochowski, M.1    Jankowski, N.2
  • 82
    • 0141632323 scopus 로고    scopus 로고
    • How does the cerebral cortex work? development, learning, attention, and 3d vision by laminar circuits of visual cortex
    • S. Grossberg. How does the cerebral cortex work? development, learning, attention, and 3d vision by laminar circuits of visual cortex. Behavioral and Cognitive Neuroscience Reviews, 2:47-76, 2003.
    • (2003) Behavioral and Cognitive Neuroscience Reviews , vol.2 , pp. 47-76
    • Grossberg, S.1
  • 86
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • H. Haas H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304:78-80, 2004.
    • (2004) Science , vol.304 , pp. 78-80
    • Haas, H.1    Jaeger, H.2
  • 87
    • 58049186832 scopus 로고
    • Neural Networks - A Comprehensive Foundation
    • New York
    • S. Haykin. Neural Networks - A Comprehensive Foundation. Maxwell MacMillian Int., New York, 1994.
    • (1994) Maxwell MacMillian Int
    • Haykin, S.1
  • 88
    • 15944374710 scopus 로고    scopus 로고
    • Cogent confabulation
    • R. Hecht-Nielsen. Cogent confabulation. Neural Networks, 18:111-115, 2005.
    • (2005) Neural Networks , vol.18 , pp. 111-115
    • Hecht-Nielsen, R.1
  • 89
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:381-414, 2006.
    • (2006) Neural Computation , vol.18 , pp. 381-414
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 91
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17:879-892, 2006.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 94
    • 0842343634 scopus 로고    scopus 로고
    • A solution for the n-bit parity problem using a single translated multiplicative neuron
    • E.M. Iyoda, H. Nobuhara, and K. Hirota. A solution for the n-bit parity problem using a single translated multiplicative neuron. Neural Processing Letters, 18(3):233-238, 2003.
    • (2003) Neural Processing Letters , vol.18 , Issue.3 , pp. 233-238
    • Iyoda, E.M.1    Nobuhara, H.2    Hirota, K.3
  • 95
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function neural networks and fuzzy inference systems
    • J.S.R. Jang and C.T. Sun. Functional equivalence between radial basis function neural networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 4:156-158, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 156-158
    • Jang, J.S.R.1    Sun, C.T.2
  • 96
    • 0037618591 scopus 로고    scopus 로고
    • Optimal transfer function neural networks
    • Bruges, Belgium, De-facto publications
    • N. Jankowski and W. Duch. Optimal transfer function neural networks. In 9th European Symposium on Artificial Neural Networks, pages 101-106, Bruges, Belgium, 2001. De-facto publications.
    • (2001) 9th European Symposium on Artificial Neural Networks , pp. 101-106
    • Jankowski, N.1    Duch, W.2
  • 97
    • 9444236865 scopus 로고    scopus 로고
    • Comparison of instance selection algorithms. I. algorithms survey
    • N. Jankowski and M. Grochowski. Comparison of instance selection algorithms. I. algorithms survey. Lecture Notes in Computer Science 3070:598-603, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3070 , pp. 598-603
    • Jankowski, N.1    Grochowski, M.2
  • 99
    • 84956648339 scopus 로고    scopus 로고
    • Statistical control of RBF-like networks for classification
    • Lausanne, Switzerland, October, Springer-Verlag
    • N. Jankowski and V. Kadirkamanathan. Statistical control of RBF-like networks for classification. In 7th International Conference on Artificial Neural Networks, pages 385-390, Lausanne, Switzerland, October 1997. Springer-Verlag.
    • (1997) 7th International Conference on Artificial Neural Networks , pp. 385-390
    • Jankowski, N.1    Kadirkamanathan, V.2
  • 101
    • 34249981736 scopus 로고    scopus 로고
    • M. Jordan and Eds. T.J. Sejnowski. Graphical Models. Foundations of Neural Computation. MIT Press, 2001.
    • M. Jordan and Eds. T.J. Sejnowski. Graphical Models. Foundations of Neural Computation. MIT Press, 2001.
  • 103
    • 34250014956 scopus 로고    scopus 로고
    • N. Kasabov. Evolving Connectionist Systems - Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines. Springer, Perspectives in Neurocomputing, 2002.
    • N. Kasabov. Evolving Connectionist Systems - Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines. Springer, Perspectives in Neurocomputing, 2002.
  • 108
  • 113
    • 0028695548 scopus 로고
    • An associative memory that can form hypotheses: A phase-coded neural network
    • N. Kunstman, C. Hillermeier, B. Rabus, and P. Tavan. An associative memory that can form hypotheses: A phase-coded neural network. Biological Cybernetics, 72:119-132, 1994.
    • (1994) Biological Cybernetics , vol.72 , pp. 119-132
    • Kunstman, N.1    Hillermeier, C.2    Rabus, B.3    Tavan, P.4
  • 116
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V.Y. Lin, Pinkus, and S. Schocken. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6:861-867, 1993.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus3    Schocken, S.4
  • 117
    • 0028697652 scopus 로고
    • Detection and estimation using an adaptive rational function filters
    • H. Leung and S. Haykin. Detection and estimation using an adaptive rational function filters. IEEE Transactions on Signal Processing, 12:3365-3376, 1994.
    • (1994) IEEE Transactions on Signal Processing , vol.12 , pp. 3365-3376
    • Leung, H.1    Haykin, S.2
  • 121
    • 34250005710 scopus 로고    scopus 로고
    • W. Maass and Eds. C.M. Bishop, editors. Pulsed Neural Networks. MIT Press, Cambridge, MA, 1998.
    • W. Maass and Eds. C.M. Bishop, editors. Pulsed Neural Networks. MIT Press, Cambridge, MA, 1998.
  • 122
    • 34249980918 scopus 로고    scopus 로고
    • Theory of the computational function of microcircuit dynamics
    • S. Grillner and A. M. Graybiel, editors, MIT Press
    • W. Maass and H. Markram. Theory of the computational function of microcircuit dynamics. In S. Grillner and A. M. Graybiel, editors, Microcircuits. The Interface between Neurons and Global Brain Function pages 371-392. MIT Press, 2006.
    • (2006) Microcircuits. The Interface between Neurons and Global Brain Function , pp. 371-392
    • Maass, W.1    Markram, H.2
  • 123
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14:2531-2560, 2002.
    • (2002) Neural Computation , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 127
    • 84976661022 scopus 로고
    • Design complexity measurement and testing
    • T.J. McCabe and C.W. Butler. Design complexity measurement and testing. Communications of the ACM, 32:1415-1425, 1989.
    • (1989) Communications of the ACM , vol.32 , pp. 1415-1425
    • McCabe, T.J.1    Butler, C.W.2
  • 131
    • 33749558210 scopus 로고    scopus 로고
    • I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid prototyping for complex data mining tasks. In Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2006), pages 935-940, 2006.
    • I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid prototyping for complex data mining tasks. In Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2006), pages 935-940, 2006.
  • 142
    • 0025490985 scopus 로고
    • Network for approximation and learning
    • T. Poggio and F. Girosi. Network for approximation and learning. Proceedings of the IEEE, 78:1481-1497, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 143
    • 0030899571 scopus 로고    scopus 로고
    • Spatial transformation in the parietal cortex using basis functions
    • A. Pouget and T.J. Sejnowski. Spatial transformation in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9:222-237, 1997.
    • (1997) Journal of Cognitive Neuroscience , vol.9 , pp. 222-237
    • Pouget, A.1    Sejnowski, T.J.2
  • 144
    • 85047682906 scopus 로고    scopus 로고
    • Simulating a lesion in a basis function model of spatial representations: Comparison with hemineglect
    • A. Pouget and T.J. Sejnowski. Simulating a lesion in a basis function model of spatial representations: Comparison with hemineglect. Psychological Review, 108:653-673, 2001.
    • (2001) Psychological Review , vol.108 , pp. 653-673
    • Pouget, A.1    Sejnowski, T.J.2
  • 145
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • J.C. Mason and M.G. Cox, editors, Oxford, Oxford University Press
    • M.J.D. Powell. Radial basis functions for multivariable interpolation: A review. In J.C. Mason and M.G. Cox, editors, Algorithms for Approximation of Functions and Data, pages 143-167, Oxford, 1987. Oxford University Press.
    • (1987) Algorithms for Approximation of Functions and Data , pp. 143-167
    • Powell, M.J.D.1
  • 146
    • 84900150885 scopus 로고    scopus 로고
    • J.R. Rabunal and J. Dorado, editors, Hershey, PA, Idea Group Pub
    • J.R. Rabunal and J. Dorado, editors. Artificial Neural Networks in Real-life Applications. Hershey, PA, Idea Group Pub, 2005.
    • (2005) Artificial Neural Networks in Real-life Applications
  • 147
    • 0037213791 scopus 로고    scopus 로고
    • Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system
    • R. Raizada and S. Grossberg. Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system. Cerebral Cortex, 13:100-113, 2003.
    • (2003) Cerebral Cortex , vol.13 , pp. 100-113
    • Raizada, R.1    Grossberg, S.2
  • 149
    • 13444306614 scopus 로고    scopus 로고
    • Constructive role of noise in signal detection from parallel arrays of quantizers
    • D. Rousseau and F. Chapeau-Blondeau. Constructive role of noise in signal detection from parallel arrays of quantizers. Signal Processing, 85:571-580, 2005.
    • (2005) Signal Processing , vol.85 , pp. 571-580
    • Rousseau, D.1    Chapeau-Blondeau, F.2
  • 150
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 151
    • 0038064972 scopus 로고    scopus 로고
    • Artificial neural networks - a science in trouble
    • A. Roy. Artificial neural networks - a science in trouble. SIGKDD Explorations, 1:33-38, 2000.
    • (2000) SIGKDD Explorations , vol.1 , pp. 33-38
    • Roy, A.1
  • 152
    • 0033699188 scopus 로고    scopus 로고
    • A theory of the brain: There are parts of the brain that control other parts
    • IEEE Computer Society Press
    • A. Roy. A theory of the brain: There are parts of the brain that control other parts. In Proc. of the Int. Joint Conf. on Neural Networks (IJCNN 2000), volume 2, pages 81-86. IEEE Computer Society Press, 2000.
    • (2000) Proc. of the Int. Joint Conf. on Neural Networks (IJCNN 2000) , vol.2 , pp. 81-86
    • Roy, A.1
  • 153
    • 0003444646 scopus 로고
    • D.E. Rumelhart and J.L. McClelland eds, Foundations. MIT Press, Cambridge, MA
    • D.E. Rumelhart and J.L. McClelland (eds). Parallel Distributed Processing, Vol. 1: Foundations. MIT Press, Cambridge, MA, 1986.
    • (1986) Parallel Distributed Processing , vol.1
  • 155
    • 0034814933 scopus 로고    scopus 로고
    • Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet
    • E. Salinas and T.J. Sejnowski. Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet. Neuroscientist, 7:430-440, 2001.
    • (2001) Neuroscientist , vol.7 , pp. 430-440
    • Salinas, E.1    Sejnowski, T.J.2
  • 156
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 158
    • 0035015680 scopus 로고    scopus 로고
    • Three learning phases for radial-basis-function networks
    • F. Schwenker, H.A. Kestler, and G. Palm. Three learning phases for radial-basis-function networks. Neural Networks, 14:439-458, 2001.
    • (2001) Neural Networks , vol.14 , pp. 439-458
    • Schwenker, F.1    Kestler, H.A.2    Palm, G.3
  • 160
    • 0033164971 scopus 로고    scopus 로고
    • Advances in Shruti - a neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony
    • L. Shastri. Advances in Shruti - a neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony. Applied Intelligence, 11:79-108, 1999.
    • (1999) Applied Intelligence , vol.11 , pp. 79-108
    • Shastri, L.1
  • 161
    • 21744432236 scopus 로고    scopus 로고
    • Geometrical learning, descriptive geometry, and biomimetic pattern recognition
    • W. Shoujue and L. Jiangliang. Geometrical learning, descriptive geometry, and biomimetic pattern recognition. Neurocomputing, 67:9-28, 2005.
    • (2005) Neurocomputing , vol.67 , pp. 9-28
    • Shoujue, W.1    Jiangliang, L.2
  • 162
  • 163
    • 0032661851 scopus 로고    scopus 로고
    • Linearly combining density estimators via stacking
    • P. Smyth and D. Wolpert. Linearly combining density estimators via stacking. Machine Learning, 36:59-83, 1999.
    • (1999) Machine Learning , vol.36 , pp. 59-83
    • Smyth, P.1    Wolpert, D.2
  • 164
    • 21744461510 scopus 로고    scopus 로고
    • Tools for application-driven linear dimension reduction
    • Anuj Srivastava and Xiuwen Liu. Tools for application-driven linear dimension reduction. Neurocomputing, 67:136-160, 2005.
    • (2005) Neurocomputing , vol.67 , pp. 136-160
    • Srivastava, A.1    Liu, X.2
  • 167
    • 34249977872 scopus 로고    scopus 로고
    • Improving Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size Problem
    • in press
    • J.D. Tebbens and P. Schlesinger, Improving Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size Problem, Computational Statistics and Data Analysis (in press).
    • Computational Statistics and Data Analysis
    • Tebbens, J.D.1    Schlesinger, P.2
  • 170
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 171
    • 19544368196 scopus 로고    scopus 로고
    • Learning kernels from biological networks by maximizing entropy
    • K. Tsuda and W.S. Noble. Learning kernels from biological networks by maximizing entropy. Bioinformatics, 20:i326-i333, 2004.
    • (2004) Bioinformatics , vol.20
    • Tsuda, K.1    Noble, W.S.2
  • 172
    • 0001682375 scopus 로고
    • Alopex: A correlation-based learning algorithm for feeedforward and recurrent neural networks
    • K.P. Unnikrishnan and K.P. Venugopal. Alopex: A correlation-based learning algorithm for feeedforward and recurrent neural networks. Neural Computation, 6:469-490, 1994.
    • (1994) Neural Computation , vol.6 , pp. 469-490
    • Unnikrishnan, K.P.1    Venugopal, K.P.2
  • 173
    • 11244331236 scopus 로고    scopus 로고
    • A tree kernel to analyze phylogenetic profiles
    • J.-P. Vert. A tree kernel to analyze phylogenetic profiles. Bioinformatics, 18:S276-S284, 2002.
    • (2002) Bioinformatics , vol.18
    • Vert, J.-P.1
  • 174
    • 34250009320 scopus 로고
    • A brief history of connectionism and its psychological implications
    • A. Clark and R. Lutz, editors, Springer-Verlag, Berlin
    • S.F. Walker. A brief history of connectionism and its psychological implications. In A. Clark and R. Lutz, editors, Connectionism in Context, pages 123-144. Springer-Verlag, Berlin, 1992.
    • (1992) Connectionism in Context , pp. 123-144
    • Walker, S.F.1
  • 175
    • 0033629441 scopus 로고    scopus 로고
    • On connectedness: A solution based on oscillatory correlation
    • D.L. Wang. On connectedness: A solution based on oscillatory correlation. Neural Computation, 12:131-139, 2000.
    • (2000) Neural Computation , vol.12 , pp. 131-139
    • Wang, D.L.1
  • 177
    • 10244221214 scopus 로고    scopus 로고
    • Multiple instantiation and rule mediation in shruti
    • C. Wendelken and L. Shastri. Multiple instantiation and rule mediation in shruti. Connection Science, 16:211-217, 2004.
    • (2004) Connection Science , vol.16 , pp. 211-217
    • Wendelken, C.1    Shastri, L.2
  • 179
    • 34250013631 scopus 로고    scopus 로고
    • Influence of probability estimation parameters on stability of accuracy in prototype rules using heterogeneous distance functions
    • T. Wieczorek, M. Blachnik, and W. Duch. Influence of probability estimation parameters on stability of accuracy in prototype rules using heterogeneous distance functions. Artificial Intelligence Studies, 2:71-78, 2005.
    • (2005) Artificial Intelligence Studies , vol.2 , pp. 71-78
    • Wieczorek, T.1    Blachnik, M.2    Duch, W.3
  • 180
    • 34249982864 scopus 로고    scopus 로고
    • Heterogeneous distance functions for prototype rules: Influence of parameters on probability estimation
    • T. Wieczorek, M. Blachnik, and W. Duch. Heterogeneous distance functions for prototype rules: Influence of parameters on probability estimation. Artificial Intelligence Studies (in print).
    • Artificial Intelligence Studies (in print)
    • Wieczorek, T.1    Blachnik, M.2    Duch, W.3
  • 181
    • 0004294784 scopus 로고
    • Addison-Wesley, Reading, MA, third edition
    • P.H. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA, third edition, 1992.
    • (1992) Artificial Intelligence
    • Winston, P.H.1
  • 183
    • 0037402467 scopus 로고    scopus 로고
    • Information compression by multiple alignment, unification and search as a unifying principle in computing and cognition
    • J.G. Wolff. Information compression by multiple alignment, unification and search as a unifying principle in computing and cognition. Artificial Intelligence Review, 19:193-230, 2003.
    • (2003) Artificial Intelligence Review , vol.19 , pp. 193-230
    • Wolff, J.G.1
  • 185
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.