메뉴 건너뛰기




Volumn 9, Issue 8, 1996, Pages 1385-1403

Varieties of Helmholtz machine

Author keywords

expectation maximization; feedback connections; unsupervised learning

Indexed keywords

BRAIN MODELS; DATA PROCESSING; LEARNING ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS; NEUROPHYSIOLOGY; PHYSIOLOGICAL MODELS; PROBABILITY DENSITY FUNCTION;

EID: 0030297038     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(96)00009-3     Document Type: Article
Times cited : (98)

References (65)
  • 1
    • 0002319152 scopus 로고
    • The EM algorithm and information geometry in neural network learning
    • Amari S. The EM algorithm and information geometry in neural network learning. Neural Computation. 7:1995;13-18.
    • (1995) Neural Computation , vol.7 , pp. 13-18
    • Amari, S.1
  • 2
    • 0027240404 scopus 로고
    • Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade
    • Antonini A., Stryker M.P. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. Journal of Neuroscience. 13:1993;3549-3573.
    • (1993) Journal of Neuroscience , vol.13 , pp. 3549-3573
    • Antonini, A.1    Stryker, M.P.2
  • 3
    • 0025078744 scopus 로고
    • Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rate visual cortex
    • Artola A., Brocher S., Singer W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rate visual cortex. Nature. 347:1990;69-72.
    • (1990) Nature , vol.347 , pp. 69-72
    • Artola, A.1    Brocher, S.2    Singer, W.3
  • 4
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow H.B. Unsupervised learning. Neural Computation. 1:1989;295-311.
    • (1989) Neural Computation , vol.1 , pp. 295-311
    • Barlow, H.B.1
  • 7
    • 84965063004 scopus 로고
    • An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology
    • Baum L.E., Eagon J.A. An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bulletin of the American Mathematical Society. 73:1967;360-363.
    • (1967) Bulletin of the American Mathematical Society , vol.73 , pp. 360-363
    • Baum, L.E.1    Eagon, J.A.2
  • 8
    • 0000353178 scopus 로고
    • A maximisation technique occurring in the statistical analysis of probabilistic functions of Markov Chains
    • Baum L.E., Petrie E., Soules G., Weiss N. A maximisation technique occurring in the statistical analysis of probabilistic functions of Markov Chains. Annals of Mathematics and Statistics. 41(1):1970;164-171.
    • (1970) Annals of Mathematics and Statistics , vol.41 , Issue.1 , pp. 164-171
    • Baum, L.E.1    Petrie, E.2    Soules, G.3    Weiss, N.4
  • 9
    • 0026586030 scopus 로고
    • A self-organizing neural network that discovers surfaces in random-dot stereograms
    • Becker S., Hinton G.E. A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature. 355:1992;161-163.
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 11
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter G., Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics and Image Processing. 37:1987;54-115.
    • (1987) Computer Vision, Graphics and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.1    Grossberg, S.2
  • 12
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • Dayan P., Zemel R.S. Competition and multiple cause models. Neural Computation. 7:1995;565-579.
    • (1995) Neural Computation , vol.7 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 17
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman D.J., Van Essen D.C. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex. 1:1991;1-47.
    • (1991) Cerebral Cortex , vol.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 18
    • 0024438785 scopus 로고
    • Development of Y-axon innervation of cortical area 18 in the cat
    • Friedlander M.J., Martin K.A.C. Development of Y-axon innervation of cortical area 18 in the cat. Journal of Physiology. 416:1989;183-213.
    • (1989) Journal of Physiology , vol.416 , pp. 183-213
    • Friedlander, M.J.1    Martin, K.A.C.2
  • 19
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an EM approach
    • J. D. Cowan G. Tesauro, & J. Alspector (Eds.) San Mateo, CA: Morgan Kaufmann.
    • Ghahramani, Z., & Jordan, M. I. (1984). Supervised learning from incomplete data via an EM approach. In J. D. Cowan G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems 6 (pp. 120-127). San Mateo, CA: Morgan Kaufmann.
    • (1984) Advances in Neural Information Processing Systems 6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.I.2
  • 21
  • 23
    • 0001590282 scopus 로고
    • Deterministic Boltzmann learning performs steepest descent in weight-space
    • Hinton G.E. Deterministic Boltzmann learning performs steepest descent in weight-space. Neural Computation. 1:1986;143-150.
    • (1986) Neural Computation , vol.1 , pp. 143-150
    • Hinton, G.E.1
  • 26
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds) San Mateo, CA: Morgan Kaufmann.
    • Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds), Advances in neural information processing systems 6 (pp. 3-10). San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 27
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton G.E., Dayan P., Frey B.J., Neal R.M. The wake-sleep algorithm for unsupervised neural networks. Science. 268:1995;1158-1160.
    • (1995) Science , vol.268 , pp. 1158-1160
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 29
    • 0043170362 scopus 로고
    • Convergence results for the EM approach to mixtures of experts architectures
    • Centre for Biological and Computational Learning, MIT.
    • Jordan, M. I., & Xu, L. (1993). Convergence results for the EM approach to mixtures of experts architectures. CBCL Memo 87, Centre for Biological and Computational Learning, MIT.
    • (1993) CBCL Memo 87
    • Jordan, M.I.1    Xu, L.2
  • 30
    • 34247861846 scopus 로고
    • A forward-inverse optics model of reciprocal connections between visual cortical areas
    • Kawato M., Hayakama H., Inui T. A forward-inverse optics model of reciprocal connections between visual cortical areas. Network. 4:1993;415-422.
    • (1993) Network , vol.4 , pp. 415-422
    • Kawato, M.1    Hayakama, H.2    Inui, T.3
  • 31
    • 0011858375 scopus 로고
    • Integrated segmentation and recognition of hand-printed numerals
    • R.P. Lippmann, J. Moody, & D.S. Touretzky (Eds.) San Mateo, CA: Morgan Kaufmann.
    • Keeler, J.D., Rumelhart, D.E., & Leow, W.K. (1991). Integrated segmentation and recognition of hand-printed numerals. In R.P. Lippmann, J. Moody, & D.S. Touretzky (Eds.), Advances in neural information processing systems 3 (pp. 557-563). San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 557-563
    • Keeler, J.D.1    Rumelhart, D.E.2    Leow, W.K.3
  • 32
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics. 43:1982;59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 35
    • 0002324961 scopus 로고
    • The epistemological problem for automata
    • C.E. Shannon, & J. McCarthy (Eds.) Princeton, NJ: Princeton University Press.
    • MacKay, D.M. (1956). The epistemological problem for automata. In C.E. Shannon, & J. McCarthy (Eds.), Automata studies (pp. 235-252). Princeton, NJ: Princeton University Press.
    • (1956) Automata Studies , pp. 235-252
    • MacKay, D.M.1
  • 37
    • 0026352252 scopus 로고
    • A neural mechanism for working and recognition memory in inferior temporal cortex
    • Miller E.K., Li L., Desimone R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science. 254:1991;1377-1379.
    • (1991) Science , vol.254 , pp. 1377-1379
    • Miller, E.K.1    Li, L.2    Desimone, R.3
  • 38
    • 0000708595 scopus 로고
    • Using aperiodic reinforcement for directed self-organization
    • C.L. Giles, S. J. Hanson, & J.D. Cowan (Eds.) San Mateo: CA: Morgan Kaufmann.
    • Montague, P.R., Dayan, P., Nowlan, S.J., Pouget, A., & Sejnowski, T.J. (1993). Using aperiodic reinforcement for directed self-organization. In C.L. Giles, S. J. Hanson, & J.D. Cowan (Eds.), Advances in neural information processing systems 5 (pp. 969-977). San Mateo: CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 969-977
    • Montague, P.R.1    Dayan, P.2    Nowlan, S.J.3    Pouget, A.4    Sejnowski, T.J.5
  • 39
    • 0002086574 scopus 로고
    • Neuronal architectures for pattern-theoretic problems
    • C. Koch, & J. Davis (Eds.) Cambridge, MA: MIT Press.
    • Mumford, D. (1994). Neuronal architectures for pattern-theoretic problems. In C. Koch, & J. Davis (Eds.), Large-scale theories of the cortex (pp. 125-152). Cambridge, MA: MIT Press.
    • (1994) Large-scale Theories of the Cortex , pp. 125-152
    • Mumford, D.1
  • 40
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal R.M. Connectionist learning of belief networks. Artificial Intelligence. 56:1992;71-113.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 45
    • 0003138145 scopus 로고
    • Redundancy reduction of a Gabor representation: A possible computational role for feedback from primary visual cortex to lateral geniculate nucleus
    • I. Aleksander, & J. Taylor, (Eds.), Amsterdam: Elsevier.
    • Pece, A.E.C. (1992). Redundancy reduction of a Gabor representation: a possible computational role for feedback from primary visual cortex to lateral geniculate nucleus. In I. Aleksander, & J. Taylor, (Eds.), Artificial neural networks 2 (pp. 865-868). Amsterdam: Elsevier.
    • (1992) Artificial Neural Networks 2 , pp. 865-868
    • Pece, A.E.C.1
  • 46
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • Peterson C., Anderson J.R. A mean field theory learning algorithm for neural networks. Complex Systems. 1:1987;995-1019.
    • (1987) Complex Systems , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 47
    • 0002109138 scopus 로고
    • A theory of Pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement
    • A.H. Black, & W.F. Prokasy (Eds.) New York: Appleton-Century Crofts.
    • Rescorla, R.A., & Wagner, A.R. (1972). A theory of Pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement. In A.H. Black, & W.F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-69). New York: Appleton-Century Crofts.
    • (1972) Classical Conditioning II: Current Research and Theory , pp. 64-69
    • Rescorla, R.A.1    Wagner, A.R.2
  • 49
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin D.B., Thayer D.T. EM algorithms for ML factor analysis. Psychometrika. 47:1982;69-76.
    • (1982) Psychometrika , vol.47 , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 50
    • 0022471098 scopus 로고
    • Learning internal representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by back-propagating errors. Nature. 323:1986;533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 52
    • 0000195558 scopus 로고
    • Boltzmann chains and hidden Markov models
    • G. Tesauro, D.S. Touretzky, & T. Leen (Eds.) San Mateo, CA: Morgan Kaufmann.
    • Saul, L., & Jordan, M.I. (1995). Boltzmann chains and hidden Markov models. In G. Tesauro, D.S. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems 7. San Mateo, CA: Morgan Kaufmann.
    • (1995) Advances in Neural Information Processing Systems 7
    • Saul, L.1    Jordan, M.I.2
  • 54
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • Saund E. A multiple cause mixture model for unsupervised learning. Neural Computation. 7:1994;51-71.
    • (1994) Neural Computation , vol.7 , pp. 51-71
    • Saund, E.1
  • 55
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation. 4:1992;243-248.
    • (1992) Neural Computation , vol.4 , pp. 243-248
    • Schmidhuber, J.1
  • 56
    • 0029160319 scopus 로고
    • An emergent model of orientation selectivity in cat visual cortical simple cells
    • (in press).
    • Somers, D.C., Nelson, S.B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience (in press).
    • (1995) Journal of Neuroscience
    • Somers, D.C.1    Nelson, S.B.2    Sur, M.3
  • 57
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal difference
    • Sutton R.S. Learning to predict by the methods of temporal difference. Machine Learning. 3:1988;9-44.
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 59
    • 0000684508 scopus 로고
    • Training neural networks with deficient data
    • J.D. Cowan, G. Tesauro, & J. Alspector (Eds.) San Mateo, CA: Morgan Kaufmann.
    • Tresp, V., Ahmand, S., & Neunier, R. (1994). Training neural networks with deficient data. In J.D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems 6 (pp. 128-135). San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 128-135
    • Tresp, V.1    Ahmand, S.2    Neunier, R.3
  • 61
    • 0009413082 scopus 로고
    • Mean field networks that learn to disriminate temporally distorted strings
    • D. Touretzky, J. Elman, & T. Sejnowlski (Eds.) San Mateo, CA: Morgan Kaufmann.
    • Williams, C.K.I., & Hinton, G. (1991). Mean field networks that learn to disriminate temporally distorted strings. In D. Touretzky, J. Elman, & T. Sejnowlski (Eds.), Connectionist models: Proceedings of the 1990 Summer School (pp. 18-22). San Mateo, CA: Morgan Kaufmann.
    • (1991) Connectionist Models: Proceedings of the 1990 Summer School , pp. 18-22
    • Williams, C.K.I.1    Hinton, G.2
  • 62
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Williams R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning. 8:1992;229-256.
    • (1992) Machine Learning , vol.8 , pp. 229-256
    • Williams, R.J.1
  • 63
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation. 1:1989;270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 64
    • 0010402946 scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Centre for Biological and Computational Learning, MIT.
    • Xu, L., & Jordan, M.I. (1995). On convergence properties of the EM algorithm for Gaussian mixtures. CBCL Paper; 111, Centre for Biological and Computational Learning, MIT.
    • (1995) CBCL Paper; 111
    • Xu, L.1    Jordan, M.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.