메뉴 건너뛰기




Volumn 92, Issue 5, 2004, Pages 771-805

Computational intelligence methods for rule-based data understanding

Author keywords

Data mining; Decision support; Decision trees; Feature selection; Fuzzy systems; Inductive learning; Logical rule extraction; Machine learning (ML); Neural networks, neurofuzzy systems

Indexed keywords

DATABASE SYSTEMS; ERROR ANALYSIS; FUZZY SETS; LEARNING SYSTEMS; NEURAL NETWORKS; OPTIMIZATION; STATISTICAL METHODS; TREES (MATHEMATICS); VISUALIZATION;

EID: 21244495584     PISSN: 00189219     EISSN: None     Source Type: Journal    
DOI: 10.1109/JPROC.2004.826605     Document Type: Conference Paper
Times cited : (172)

References (156)
  • 4
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • R. Andrews, J. Diederich, and A. B. Tickle, "A survey and critique of techniques for extracting rules from trained artificial neural networks," Knowl.-Based Syst., vol. 8, pp. 373-389, 1995.
    • (1995) Knowl.-Based Syst. , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 5
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • R. Michalski, "A theory and methodology of inductive learning," Artif. Intell., vol. 20, pp. 111-161, 1983.
    • (1983) Artif. Intell. , vol.20 , pp. 111-161
    • Michalski, R.1
  • 9
    • 0141459861 scopus 로고    scopus 로고
    • Coloring black boxes: Visualization of neural network decisions
    • W. Duch, "Coloring black boxes: Visualization of neural network decisions," in Proc. Int. Joint Conf. Neural Networks, vol. 1, 2003, pp. 1735-1740.
    • (2003) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 1735-1740
    • Duch, W.1
  • 11
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • Mar.
    • W. Duch, R. Adamczak, and K. Grabczewski, "A new methodology of extraction, optimization and application of crisp and fuzzy logical rules," IEEE Trans. Neural Networks, vol. 12, pp. 277-306, Mar. 2001.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 12
    • 78149315656 scopus 로고    scopus 로고
    • Using rule sets to maximize ROC performance
    • T. Fawcett, "Using rule sets to maximize ROC performance," in Prof. IEEE Int. Conf. Data Mining, 2001. pp. 131-138.
    • (2001) Prof. IEEE Int. Conf. Data Mining , pp. 131-138
    • Fawcett, T.1
  • 16
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L. A. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, pp. 338-353, 1965.
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 17
    • 0010321102 scopus 로고    scopus 로고
    • Measurements of membership functions: Theoretical and empirical work
    • D. Dubois and H. Prade, Eds. Boston, MA: Kluwer
    • T. Bilgiç and I. B. Türkşcn. "Measurements of membership functions: Theoretical and empirical work," in Fundamentals of Fuzzy Sets, D. Dubois and H. Prade, Eds. Boston, MA: Kluwer, 2000, vol. 1, pp. 195-232.
    • (2000) Fundamentals of Fuzzy Sets , vol.1 , pp. 195-232
    • Bilgiç, T.1    Türkşcn, I.B.2
  • 21
    • 0034246365 scopus 로고    scopus 로고
    • How good are fuzzy if-then classifiers?
    • Aug.
    • L. I. Kuncheva, "How good are fuzzy if-then classifiers?," IEEE Trans. Syst., Man. Cybern. B, vol. 30, pp. 501-509, Aug. 2000.
    • (2000) IEEE Trans. Syst., Man. Cybern. B , vol.30 , pp. 501-509
    • Kuncheva, L.I.1
  • 22
    • 21244499258 scopus 로고    scopus 로고
    • Geometric query model for scientific and engineering databases
    • O. Sourina and S. H. Boey, "Geometric query model for scientific and engineering databases," Int. J. Inf. Technol., vol. 2, pp. 41-54, 1996.
    • (1996) Int. J. Inf. Technol. , vol.2 , pp. 41-54
    • Sourina, O.1    Boey, S.H.2
  • 23
    • 0002539648 scopus 로고
    • Feature space mapping as a universal adaptive system
    • W. Duch and G. H. F. Diercksen, "Feature space mapping as a universal adaptive system," Comput. Phys. Commun., vol. 87, pp. 341-371, 1995.
    • (1995) Comput. Phys. Commun. , vol.87 , pp. 341-371
    • Duch, W.1    Diercksen, G.H.F.2
  • 26
    • 0000431236 scopus 로고
    • Induction of logic programs: FOIL and related systems
    • J. R. Quinlan and R. M. Cameron-Jones, "Induction of logic programs: FOIL and related systems," New Gener. Comput., vol. 13, pp. 287-312, 1995.
    • (1995) New Gener. Comput. , vol.13 , pp. 287-312
    • Quinlan, J.R.1    Cameron-Jones, R.M.2
  • 27
    • 0031999494 scopus 로고    scopus 로고
    • Combinatorial rule explosion eliminated by a fuzzy rule configuration
    • Feb.
    • W. E. Combs and J. E. Andrews, "Combinatorial rule explosion eliminated by a fuzzy rule configuration," IEEE Trans. Fuzzy Syst., vol. 6, pp. 1-11, Feb. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 1-11
    • Combs, W.E.1    Andrews, J.E.2
  • 28
    • 0035245168 scopus 로고    scopus 로고
    • Avoiding exponential parameter growth in fuzzy systems
    • Feb.
    • M. K. Güven and K. M. Passino, "Avoiding exponential parameter growth in fuzzy systems," Trans. IEEE Fuzzy Syst., vol. 9, pp. 194-199, Feb. 2001.
    • (2001) Trans. IEEE Fuzzy Syst. , vol.9 , pp. 194-199
    • Güven, M.K.1    Passino, K.M.2
  • 31
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • San Mateo, CA
    • D. Dougherty, R. Kohavi, and M. Sahami, "Supervised and unsupervised discretization of continuous features," presented at the Machine Learning 12th Int. Conf., San Mateo, CA, 1995.
    • (1995) Machine Learning 12th Int. Conf.
    • Dougherty, D.1    Kohavi, R.2    Sahami, M.3
  • 32
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R. C. Holte, "Very simple classification rules perform well on most commonly used datasets," Mach. Learn., vol. 11, pp. 63-91, 1993.
    • (1993) Mach. Learn. , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 33
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous valued attributes for classification learning
    • San Mateo, CA
    • U. M. Fayyad and K. B. Irani, "Multi-interval discretization of continuous valued attributes for classification learning," presented at the 13th Int. Joint Conf. Artificial Intelligence, San Mateo, CA, 1993.
    • (1993) 13th Int. Joint Conf. Artificial Intelligence
    • Fayyad, U.M.1    Irani, K.B.2
  • 36
    • 0030079092 scopus 로고    scopus 로고
    • Dimensionality reduction via discretization
    • H. Liu and R. Setiono, "Dimensionality reduction via discretization," Knowl.-Based Syst., vol. 9, pp. 67-72, 1996.
    • (1996) Knowl.-Based Syst. , vol.9 , pp. 67-72
    • Liu, H.1    Setiono, R.2
  • 39
    • 0141465935 scopus 로고    scopus 로고
    • New developments in the feature space mapping model
    • _, "New developments in the feature space mapping model," in Proc. 3rd Conf. Neural Networks, 1997, pp. 65-70.
    • (1997) Proc. 3rd Conf. Neural Networks , pp. 65-70
  • 40
    • 0000400323 scopus 로고    scopus 로고
    • A survey of neural transfer functions
    • W. Duch and N. Jankowski, "A survey of neural transfer functions," Neural Comput. Surv., vol. 2, pp. 163-213, 1999.
    • (1999) Neural Comput. Surv. , vol.2 , pp. 163-213
    • Duch, W.1    Jankowski, N.2
  • 41
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, "Induction of decision trees," Mach. Learn., vol. 1, pp. 81-106, 1986.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 44
    • 0001858087 scopus 로고
    • Multivariate decision trees
    • C. E. Brodley and P. E. Utgoff, "Multivariate decision trees," Mach. Learn., vol. 19, pp. 45-77, 1995.
    • (1995) Mach. Learn. , vol.19 , pp. 45-77
    • Brodley, C.E.1    Utgoff, P.E.2
  • 46
    • 0027709263 scopus 로고
    • OC1: Randomized induction of oblique decision trees
    • S. Murthy, S. Kasif, S. Salzberg, and R. Beigel, "OC1: Randomized induction of oblique decision trees," in Proc. AAAI Conf., 1993, pp. 322-327.
    • (1993) Proc. AAAI Conf. , pp. 322-327
    • Murthy, S.1    Kasif, S.2    Salzberg, S.3    Beigel, R.4
  • 47
    • 0003085879 scopus 로고
    • Pattern recognition via linear programming: Theory and application to medical diagnosis
    • T. F. Coleman and Y. Li, Eds. Philadelphia, PA: SIAM
    • O. L. Mangasarian, R. Setiono, and W. Wolberg, "Pattern recognition via linear programming: Theory and application to medical diagnosis," in Large-Scale Numerical Optimization, T. F. Coleman and Y. Li, Eds. Philadelphia, PA: SIAM, 1989, pp. 22-30.
    • (1989) Large-Scale Numerical Optimization , pp. 22-30
    • Mangasarian, O.L.1    Setiono, R.2    Wolberg, W.3
  • 48
    • 0032627597 scopus 로고    scopus 로고
    • A connectionist approach to generating oblique decision trees
    • June
    • R. Setiono and H. Liu, "A connectionist approach to generating oblique decision trees," IEEE Trans. Syst., Man, Cybern. B, vol. 29, pp. 440-444, June 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. B , vol.29 , pp. 440-444
    • Setiono, R.1    Liu, H.2
  • 50
    • 0003330326 scopus 로고    scopus 로고
    • Bias-variance, regularization, instability and stabilization
    • C. Bishop, Ed. New York: Springer-Verlag
    • L. Breiman, "Bias-variance, regularization, instability and stabilization," in Neural Networks and Machine Learning, C. Bishop, Ed. New York: Springer-Verlag, 1998.
    • (1998) Neural Networks and Machine Learning
    • Breiman, L.1
  • 51
    • 0003312474 scopus 로고
    • On the quasiminimal solution of the general covering problem
    • R. S. Michalski, "On the quasiminimal solution of the general covering problem," in Proc. 5th Int. Symp. Information Processing, 1969, pp. 125-128.
    • (1969) Proc. 5th Int. Symp. Information Processing , pp. 125-128
    • Michalski, R.S.1
  • 52
    • 0001214429 scopus 로고    scopus 로고
    • Data mining and knowledge discovery: A review of issues and a multistrategy approach
    • R. S. Michalski, I. Bratko, and M. Kubat, Eds. New York: Wiley
    • R. S. Michalski and K. A. Kaufman, "Data mining and knowledge discovery: A review of issues and a multistrategy approach," in Machine Learning and Data Mining: Methods and Applications, R. S. Michalski, I. Bratko, and M. Kubat, Eds. New York: Wiley, 1997.
    • (1997) Machine Learning and Data Mining: Methods and Applications
    • Michalski, R.S.1    Kaufman, K.A.2
  • 53
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett, "The CN2 induction algorithm," Mach. Learn., vol 3, pp. 261-283, 1988.
    • (1988) Mach. Learn. , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 55
    • 0000531852 scopus 로고
    • Generalization as search
    • T. M. Mitchell, "Generalization as search," Artif. Intell., vol. 18, pp. 203-226, 1982.
    • (1982) Artif. Intell. , vol.18 , pp. 203-226
    • Mitchell, T.M.1
  • 57
    • 0030383603 scopus 로고    scopus 로고
    • Effective data mining using neural networks
    • Dec.
    • H. Lu, R. Setiono, and H. Liu, "Effective data mining using neural networks," IEEE Trans. Knowledge Data Eng., vol. 8, pp. 957-961, Dec. 1996.
    • (1996) IEEE Trans. Knowledge Data Eng. , vol.8 , pp. 957-961
    • Lu, H.1    Setiono, R.2    Liu, H.3
  • 58
    • 0030109008 scopus 로고    scopus 로고
    • Symbolic representation of neural networks
    • Mar.
    • R. Setiono and H. Liu, "Symbolic representation of neural networks," IEEE Computer, vol. 29, pp. 71-77, Mar. 1996.
    • (1996) IEEE Computer , vol.29 , pp. 71-77
    • Setiono, R.1    Liu, H.2
  • 59
    • 0033751611 scopus 로고    scopus 로고
    • Extracting M-of-N rules from trained neural networks
    • Mar.
    • R. Setiono, "Extracting M-of-N rules from trained neural networks," IEEE Trans. Neural Networks, vol. 11, pp. 306-512, Mar. 2001.
    • (2001) IEEE Trans. Neural Networks , vol.11 , pp. 306-512
    • Setiono, R.1
  • 60
    • 0033885056 scopus 로고    scopus 로고
    • FERNN: An algorithm for fast extraction of rules from neural networks
    • R. Setiono and W. K. Leow, "FERNN: An algorithm for fast extraction of rules from neural networks," Appl. Intel., vol. 12, pp. 15-25, 2000.
    • (2000) Appl. Intel. , vol.12 , pp. 15-25
    • Setiono, R.1    Leow, W.K.2
  • 61
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • Nov.
    • A. B. Tickle, R. Andrews, M. Golea, and J. Diederich, "The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks," IEEE Trans. Neural Networks, vol. 9, pp. 1057-1068, Nov. 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 62
    • 0024125982 scopus 로고
    • Medical diagnostic expert system based on PDP model
    • K. Saito and R. Nakano, "Medical diagnostic expert system based on PDP model," in Proc. IEEE Int. Conf. Neural Networks, vol. 1, 1988, pp. 255-262.
    • (1988) Proc. IEEE Int. Conf. Neural Networks , vol.1 , pp. 255-262
    • Saito, K.1    Nakano, R.2
  • 64
    • 0003276432 scopus 로고
    • Extracting rules from artilcial neural networks with distributed representations
    • G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press
    • S. Thrun, "Extracting rules from artilcial neural networks with distributed representations," in Advances in Neural Information Processing Systems 7, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7
    • Thrun, S.1
  • 67
    • 0036888743 scopus 로고    scopus 로고
    • Extract intelligible and concise fuzzy rules from neural networks
    • S. H. Huang and H. Xing, "Extract intelligible and concise fuzzy rules from neural networks," Fuzzy Sets Syst., vol. 132, pp. 233-243, 2002.
    • (2002) Fuzzy Sets Syst. , vol.132 , pp. 233-243
    • Huang, S.H.1    Xing, H.2
  • 69
    • 0027245159 scopus 로고
    • Knowledge-based connectionism for revising domain theories
    • Jan.-Feb.
    • _, "Knowledge-based connectionism for revising domain theories," IEEE Trans. Syst., Man. Cybern., vol. 23, pp. 173-182, Jan.-Feb. 1993.
    • (1993) IEEE Trans. Syst., Man. Cybern. , vol.23 , pp. 173-182
  • 71
    • 0028482883 scopus 로고
    • Rule generation from neural networks
    • Aug.
    • _, "Rule generation from neural networks," IEEE Trars. Syst., Man. Cybern., vol. 28, pp. 1114-1124, Aug. 1994.
    • (1994) IEEE Trars. Syst., Man. Cybern. , vol.28 , pp. 1114-1124
  • 72
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden-unit splitting
    • R. Setiono, "Extracting rules from neural networks by pruning and hidden-unit splitting," Neural Comput., vol. 9, no. 1, pp. 205-225, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.1 , pp. 205-225
    • Setiono, R.1
  • 73
    • 85013539434 scopus 로고
    • Symbolic approximation of feedforward neural networks
    • E. S. Gelsema and L. N. Kanal, Eds. New York: North-Holland
    • I. K. Sethi and J. H. Yoo, "Symbolic approximation of feedforward neural networks," in Pattern Recognition in Practice, E. S. Gelsema and L. N. Kanal, Eds. New York: North-Holland, 1994, vol. 4.
    • (1994) Pattern Recognition in Practice , vol.4
    • Sethi, I.K.1    Yoo, J.H.2
  • 74
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • G. Towell and J. Shavlik, "Extracting refined rules from knowledge-based neural networks," Mach. Learn., vol. 13, pp. 71-101, 1993.
    • (1993) Mach. Learn. , vol.13 , pp. 71-101
    • Towell, G.1    Shavlik, J.2
  • 75
    • 0000966430 scopus 로고
    • A neural expert system with automated extraction of fuzzy if-then rules
    • R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
    • Y. Hayashi, "A neural expert system with automated extraction of fuzzy if-then rules," in Advances in Neural Information Processing Systems, R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, vol. 3, pp. 578-584.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 578-584
    • Hayashi, Y.1
  • 76
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • G. Towell and J. Shavlik, "Knowledge-based artificial neural networks," Artif. Intell., vol. 70, pp. 119-165, 1994.
    • (1994) Artif. Intell. , vol.70 , pp. 119-165
    • Towell, G.1    Shavlik, J.2
  • 77
    • 0000246504 scopus 로고
    • Rule induction through integrated symbolic and subsymbolic processing
    • J. Moody, S. Hanson, and R. Lippmann, Eds, San Mateo, CA: Morgan Kaufmann
    • C. McMillan, M. C. Mozer, and P. Smolensky, "Rule induction through integrated symbolic and subsymbolic processing," in Advances in Neural Information Processing Systems, J. Moody, S. Hanson, and R. Lippmann, Eds, San Mateo, CA: Morgan Kaufmann, 1992, vol. 4, pp. 969-976.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 969-976
    • McMillan, C.1    Mozer, M.C.2    Smolensky, P.3
  • 78
    • 85153953775 scopus 로고
    • Template-based algorithms for connectionist rule extraction
    • G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press
    • J. A. Alexander and M. C. Mozer, "Template-based algorithms for connectionist rule extraction," in Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press, 1995, vol. 7, pp. 609-616.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 609-616
    • Alexander, J.A.1    Mozer, M.C.2
  • 81
    • 0006009512 scopus 로고    scopus 로고
    • Rule extraction from trained neural networks
    • P. Géczy and S. Usui, "Rule extraction from trained neural networks," Behaviormetrika, vol. 26, pp. 89-106, 1999.
    • (1999) Behaviormetrika , vol.26 , pp. 89-106
    • Géczy, P.1    Usui, S.2
  • 82
    • 0003128548 scopus 로고    scopus 로고
    • Extraction of logical rules from training data using backpropagation networks
    • [Online]
    • W. Duch, R. Adamczak, and K. Grabczewski. (1996) Extraction of logical rules from training data using backpropagation networks. Proc. 1st Online Workshop Soft Computing [Online], pp. 25-30. Available: http://www.bioele.nuee. nagoya-u.ac.jp/wsc1/
    • (1996) Proc. 1st Online Workshop Soft Computing , pp. 25-30
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 83
    • 84920171485 scopus 로고
    • Using sampling and queries to extract rules from trained neural networks
    • M. W. Craven and J. W. Shavlik, "Using sampling and queries to extract rules from trained neural networks," in Proc. 11th Int. Conf. Machine Learning, 1994, pp. 37-45.
    • (1994) Proc. 11th Int. Conf. Machine Learning , pp. 37-45
    • Craven, M.W.1    Shavlik, J.W.2
  • 84
    • 0003741337 scopus 로고
    • RULENEG: Extracting rules from a trained ANN by stepwise negation
    • Neurocomputing Res. Centre. Queensland Univ. Technol., Brisbane, Qld., Aust.
    • E. Pop, R. Hayward, and J. Diederich, "RULENEG: Extracting rules from a trained ANN by stepwise negation," Neurocomputing Res. Centre. Queensland Univ. Technol., Brisbane, Qld., Aust., OUT NRC Tech. Rep., 1994.
    • (1994) OUT NRC Tech. Rep.
    • Pop, E.1    Hayward, R.2    Diederich, J.3
  • 86
    • 0031140465 scopus 로고    scopus 로고
    • Acquiring rule sets as a product of learning in a logical neural architecture
    • May
    • M. J. Healy and T. P. Caudell, "Acquiring rule sets as a product of learning in a logical neural architecture," IEEE Trans. Neural Networks, vol. 8, pp. 461-174, May 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 461-1174
    • Healy, M.J.1    Caudell, T.P.2
  • 87
    • 0001771088 scopus 로고    scopus 로고
    • Rule learning and extraction with self organizing neural networks
    • A.-H. Tan, "Rule learning and extraction with self organizing neural networks," in Proc. 1993 Connectionist Models Summer School, pp. 192-199.
    • Proc. 1993 Connectionist Models Summer School , pp. 192-199
    • Tan, A.-H.1
  • 88
    • 0002535202 scopus 로고
    • Knowledge extraction from self-organizing neural networks
    • O. Opitz, B. Lausen, and R. Klar, Eds. Berlin, Germany: Springer-Verlag
    • A. Ultsch, "Knowledge extraction from self-organizing neural networks." in Information and Classification, O. Opitz, B. Lausen, and R. Klar, Eds. Berlin, Germany: Springer-Verlag. 1993, pp. 301-306.
    • (1993) Information and Classification , pp. 301-306
    • Ultsch, A.1
  • 90
    • 0004987640 scopus 로고
    • DEDEC: Decision detection by rule extraction from neural networks
    • Neurocomputing Res. Centre, Queensland Univ. Technol., Brisbane, Qld., Aust.
    • A. B. Tickle, M. Orlowski, and J. Diederich, "DEDEC: Decision detection by rule extraction from neural networks," Neurocomputing Res. Centre, Queensland Univ. Technol., Brisbane, Qld., Aust., QUT NRC Tech. Rep., 1994.
    • (1994) QUT NRC Tech. Rep.
    • Tickle, A.B.1    Orlowski, M.2    Diederich, J.3
  • 91
    • 85156234012 scopus 로고    scopus 로고
    • Extracting tree-structured representations of trained networks
    • D. Touretzky, M. Mozer, and M. Hasselmo, Eds. Cambridge, MA: MIT Press
    • M. W. Craven and J. W. Shavlik, "Extracting tree-structured representations of trained networks," in Advances in Neural Information Processing Systems, D. Touretzky, M. Mozer, and M. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996, vol. 8, pp. 24-30.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 24-30
    • Craven, M.W.1    Shavlik, J.W.2
  • 92
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function neural networks and fuzzy inference systems
    • Jan.
    • J.-S. R. Jang and C. T. Sun, "Functional equivalence between radial basis function neural networks and fuzzy inference systems," IEEE Trans. Neural Networks, vol. 4, pp. 156-158, Jan. 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 156-158
    • Jang, J.-S.R.1    Sun, C.T.2
  • 93
    • 0002475925 scopus 로고
    • Network structuring and training using Rule based knowledge
    • J. Moody, S. Hanson, and R. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • V. Tresp, J. Hollatz, and S. Ahmad, "Network structuring and training using Rule based knowledge," in Advances in Neural Information Processing Systems, J. Moody, S. Hanson, and R. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1993, vol. 4, pp. 871-878.
    • (1993) Advances in Neural Information Processing Systems , vol.4 , pp. 871-878
    • Tresp, V.1    Hollatz, J.2    Ahmad, S.3
  • 94
    • 0028747121 scopus 로고
    • Floating Gaussian mapping: A new model of adaptive systems
    • W. Duch, "Floating Gaussian mapping: A new model of adaptive systems," Neural Netw. World, vol. 4, pp. 645-654, 1994.
    • (1994) Neural Netw. World , vol.4 , pp. 645-654
    • Duch, W.1
  • 96
    • 0005035096 scopus 로고    scopus 로고
    • Refining expert knowledge with an artificial neural network
    • _, "Refining expert knowledge with an artificial neural network," in Proc. Int. Conf. Neural Information Processing, vol. 2, 1997, pp. 847-850.
    • (1997) Proc. Int. Conf. Neural Information Processing , vol.2 , pp. 847-850
  • 97
    • 0004986173 scopus 로고
    • Rule extraction from a constrained error back propagation MLP
    • _, "Rule extraction from a constrained error back propagation MLP," in Proc. 5th Aust. Conf. Neural Networks, 1994, pp. 9-12.
    • (1994) Proc. 5th Aust. Conf. Neural Networks , pp. 9-12
  • 99
    • 0003301271 scopus 로고
    • Combining neural and symbolic learning to revise probabilistic rule bases
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann
    • J. J. Mahoney and R. J. Mooney, "Combining neural and symbolic learning to revise probabilistic rule bases," in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, vol. 5, pp. 107-114.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 107-114
    • Mahoney, J.J.1    Mooney, R.J.2
  • 102
    • 33947602485 scopus 로고
    • Neural networks in designing fuzzy systems for real world applications
    • S. K. Halgamuge and M. Glesner, "Neural networks in designing fuzzy systems for real world applications," Fuzzy Sets Syst., vol. 65, pp. 1-12, 1994.
    • (1994) Fuzzy Sets Syst. , vol.65 , pp. 1-12
    • Halgamuge, S.K.1    Glesner, M.2
  • 103
    • 0005022240 scopus 로고    scopus 로고
    • Generating linguistic rules from data using neuro-fuzzy framework
    • J. M. Żurada and A. Łozowski, "Generating linguistic rules from data using neuro-fuzzy framework," in Proc. 4th Int. Conf. Soft Computing, vol. 2, 1996, pp. 618-621.
    • (1996) Proc. 4th Int. Conf. Soft Computing , vol.2 , pp. 618-621
    • Zurada, J.M.1    Łozowski, A.2
  • 104
    • 0035358455 scopus 로고    scopus 로고
    • Learning feed-forward and recurrent fuzzy systems: A genetic approach
    • H. Surmann and M. Maniadakis, "Learning feed-forward and recurrent fuzzy systems: A genetic approach," J. Syst. Architect., vol. 47, pp. 649-662, 2001.
    • (2001) J. Syst. Architect. , vol.47 , pp. 649-662
    • Surmann, H.1    Maniadakis, M.2
  • 105
    • 0005088823 scopus 로고    scopus 로고
    • Extraction of logical rules from backpropagation networks
    • W. Duch, R. Adamczak, and K. Grabczewski, "Extraction of logical rules from backpropagation networks," Neural Process. Lett., vol. 7, pp. 1-9, 1998.
    • (1998) Neural Process. Lett. , vol.7 , pp. 1-9
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 107
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D. J. MacKay, "A practical Bayesian framework for backpropagation networks," Neural Comput., vol. 4, pp. 448-472, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • MacKay, D.J.1
  • 113
    • 84868253647 scopus 로고    scopus 로고
    • Optimization and interpretation of rule-based classifiers
    • Berlin, Germany: Physica-Verlag
    • W. Duch, N. Jankowski, K. Grabczewski, and R. Adamczak, "Optimization and interpretation of rule-based classifiers," in Advances in Soft Computing. Berlin, Germany: Physica-Verlag, 2000, pp. 1-13.
    • (2000) Advances in Soft Computing , pp. 1-13
    • Duch, W.1    Jankowski, N.2    Grabczewski, K.3    Adamczak, R.4
  • 114
    • 0033331411 scopus 로고    scopus 로고
    • Optimization of logical rules derived by neural procedures
    • Washington, DC, paper no. 741
    • W. Duch, R. Adamczak, and K. Grabczewski, "Optimization of logical rules derived by neural procedures," presented at the Int. Joint Conf. Neural Networks, Washington, DC, 1999, paper no. 741.
    • (1999) Int. Joint Conf. Neural Networks
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 115
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, pp. 29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 120
    • 33947602485 scopus 로고
    • Neural networks in designing fuzzy systems for real world applications
    • S. K. Halgamuge and M. Glesner, "Neural networks in designing fuzzy systems for real world applications," Fuzzy Sets Syst., vol. 65, pp. 1-12, 1994.
    • (1994) Fuzzy Sets Syst. , vol.65 , pp. 1-12
    • Halgamuge, S.K.1    Glesner, M.2
  • 121
    • 0005073905 scopus 로고    scopus 로고
    • IRIS revisited: A comparison of discriminant and enhanced rough set data analysis
    • L. Polkowski and A. Skowron, Eds. Heidelberg, Germany: Physica-Verlag
    • C. Browne, I. Düntsch, and G. Gediga, "IRIS revisited: A comparison of discriminant and enhanced rough set data analysis," in Rough Sets in Knowledge Discovery, L. Polkowski and A. Skowron, Eds. Heidelberg, Germany: Physica-Verlag, 1998, vol. 2, pp. 345-368.
    • (1998) Rough Sets in Knowledge Discovery , vol.2 , pp. 345-368
    • Browne, C.1    Düntsch, I.2    Gediga, G.3
  • 122
    • 0004991045 scopus 로고    scopus 로고
    • The application of neural networks, fuzzy logic, genetic algorithms and rough sets to automated knowledge acquisition
    • I. Jagielska, C. Matthews, and T. Whitfort, "The application of neural networks, fuzzy logic, genetic algorithms and rough sets to automated knowledge acquisition," in Proc. 4th Int. Conf. Soft Computing, vol. 2, 1996, pp. 565-569.
    • (1996) Proc. 4th Int. Conf. Soft Computing , vol.2 , pp. 565-569
    • Jagielska, I.1    Matthews, C.2    Whitfort, T.3
  • 123
    • 0004991044 scopus 로고    scopus 로고
    • Rule extraction from linguistic rule networks and from fuzzy neural networks: Prepositional versus fuzzy rules
    • N. Kasabov, R. Kozma, and W. Duch, "Rule extraction from linguistic rule networks and from fuzzy neural networks: Prepositional versus fuzzy rules," in Proc. 4th Int. Conf. Neural Networks and Their Applications, 1998, pp. 403-406.
    • (1998) Proc. 4th Int. Conf. Neural Networks and Their Applications , pp. 403-406
    • Kasabov, N.1    Kozma, R.2    Duch, W.3
  • 124
    • 0005035095 scopus 로고
    • Some experiments to compare rough sets theory and ordinal statistical methods
    • R. Słowiński, Ed. Dordrecht, The Netherlands: Kluwer, System Theory, Knowledge Engineering and Problem Solving
    • J. Teghem and M. Benjelloun, "Some experiments to compare rough sets theory and ordinal statistical methods," in Intelligent Decision Support: Handbook of Applications and Advances of Rough Set Theory, R. Słowiński, Ed. Dordrecht, The Netherlands: Kluwer, 1992, vol. 11, System Theory, Knowledge Engineering and Problem Solving, pp. 267-284.
    • (1992) Intelligent Decision Support: Handbook of Applications and Advances of Rough Set Theory , vol.11 , pp. 267-284
    • Teghem, J.1    Benjelloun, M.2
  • 127
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
    • R. S. Míchalskí, I. Mozetic, J. Hong, and N. Lavrac, "The multi-purpose incremental learning system AQ15 and its testing application to three medical domains," in Proc. 5th Nat. Conf. Artificial Intelligence, 1986, pp. 1041-1045.
    • (1986) Proc. 5th Nat. Conf. Artificial Intelligence , pp. 1041-1045
    • Míchalskí, R.S.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 128
    • 85152567148 scopus 로고
    • Using weighted networks to represent classification knowledge in noisy domains
    • M. Tan and L. Eshelman, "Using weighted networks to represent classification knowledge in noisy domains," in Proc. 5th Int. Conf. Machine Learning. 1988, pp. 121-134.
    • (1988) Proc. 5th Int. Conf. Machine Learning , pp. 121-134
    • Tan, M.1    Eshelman, L.2
  • 129
    • 0001929348 scopus 로고
    • Assistant-86: A knowledge-elicilation tool for sophisticated users
    • I. Bratko and N. Lavrac, Eds. Wilmslow, U.K.: Sigma
    • G. Cestnik, I. Konenenko, and I. Bratko, "Assistant-86: A knowledge-elicilation tool for sophisticated users," in Progress in Machine Learning, I. Bratko and N. Lavrac, Eds. Wilmslow, U.K.: Sigma, 1987, pp. 31-45.
    • (1987) Progress in Machine Learning , pp. 31-45
    • Cestnik, G.1    Konenenko, I.2    Bratko, I.3
  • 132
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K. P. Bennett and O. L. Mangasarian, "Robust linear programming discrimination of two linearly inseparable sets," Optim. Methods Softw., vol. 1, pp. 23-34, 1992.
    • (1992) Optim. Methods Softw. , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 133
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • R. Setiono, "Generating concise and accurate classification rules for breast cancer diagnosis," Artif. Intell. Med., vol. 18, pp. 205-219, 2000.
    • (2000) Artif. Intell. Med. , vol.18 , pp. 205-219
    • Setiono, R.1
  • 134
    • 0002814440 scopus 로고    scopus 로고
    • Neural networks in medical diagnosis: Comparison with other methods
    • A. Bulsari et al., Eds.
    • B. Ster and A. Dobnikar et al., "Neural networks in medical diagnosis: Comparison with other methods," in Proc. Int. Conf. EANN'96, A. Bulsari et al., Eds., pp. 427-430.
    • Proc. Int. Conf. EANN'96 , pp. 427-430
    • Ster, B.1    Dobnikar, A.2
  • 139
    • 0003213694 scopus 로고
    • An empirical comparison of pattern recognition, neural nets and machine learning classification methods
    • J. W. Shavlik and T. G. Dietterich, Eds. San Mateo, CA: Morgan Kauffman
    • S. M. Weiss and I. Kapouleas, "An empirical comparison of pattern recognition, neural nets and machine learning classification methods." in Readings in Machine Learning, J. W. Shavlik and T. G. Dietterich, Eds. San Mateo, CA: Morgan Kauffman, 1990.
    • (1990) Readings in Machine Learning
    • Weiss, S.M.1    Kapouleas, I.2
  • 141
    • 85171486407 scopus 로고    scopus 로고
    • Hybrid neural-global minimization method of logical rule extraction
    • W. Duch, R. Adamczak, K. Grabczewski, and G. Żal, "Hybrid neural-global minimization method of logical rule extraction," Int. J. Adv. Comput. Intell., vol. 3, pp. 348-356, 1999.
    • (1999) Int. J. Adv. Comput. Intell. , vol.3 , pp. 348-356
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3    Zal, G.4
  • 143
    • 0031274113 scopus 로고    scopus 로고
    • Knowledge based fuzzy MLP for classification and rule generation
    • Nov.
    • S. Mitra, R. De, and S. Pal, "Knowledge based fuzzy MLP for classification and rule generation," IEEE Trans. Neural Networks, vol. 8, pp. 1338-1350, Nov. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1338-1350
    • Mitra, S.1    De, R.2    Pal, S.3
  • 144
    • 0034333688 scopus 로고    scopus 로고
    • A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders
    • Y. Hayashi, R. Setiono, and K. Yoshida, "A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders," Artif. Intell. Med., vol. 20, pp. 205-216, 2000.
    • (2000) Artif. Intell. Med. , vol.20 , pp. 205-216
    • Hayashi, Y.1    Setiono, R.2    Yoshida, K.3
  • 145
    • 0012725048 scopus 로고    scopus 로고
    • Fuzzy and crisp logical rule extraction methods in application to medical data
    • P. S. Szczepaniak, P. J. G. Lisboa, and J. Kacprzyk, Eds. Berlin, Germany: Physica-Verlag
    • W. Duch, R. Adamczak, K. Grabczewski, G. Żal, and Y. Hayashi, "Fuzzy and crisp logical rule extraction methods in application to medical data," in Fuzzy Systems in Medicine, P. S. Szczepaniak, P. J. G. Lisboa, and J. Kacprzyk, Eds. Berlin, Germany: Physica-Verlag, 2000, pp. 593-616.
    • (2000) Fuzzy Systems in Medicine , pp. 593-616
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3    Zal, G.4    Hayashi, Y.5
  • 147
    • 0029688035 scopus 로고    scopus 로고
    • Personality: Individual differences and clinical assessment
    • J. N. Butcher and S. V. Rouse, "Personality: Individual differences and clinical assessment," Annu. Rev. Psychol., vol. 47, pp. 87-111, 1996.
    • (1996) Annu. Rev. Psychol. , vol.47 , pp. 87-111
    • Butcher, J.N.1    Rouse, S.V.2
  • 149
    • 0002105846 scopus 로고    scopus 로고
    • Relational partitioning of fuzzy rules
    • R. R. Yager and D. Filev, "Relational partitioning of fuzzy rules," Fuzzy Sets Syst., vol. 80, pp. 57-69, 1996.
    • (1996) Fuzzy Sets Syst. , vol.80 , pp. 57-69
    • Yager, R.R.1    Filev, D.2
  • 151
    • 0037331913 scopus 로고    scopus 로고
    • Data-driven linguistic modeling using relational fuzzy rules
    • Feb.
    • _, "Data-driven linguistic modeling using relational fuzzy rules," IEEE Trans. Fuzzy Syst., vol. 11, pp. 121-134, Feb. 2003.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , pp. 121-134
  • 154
    • 0029344494 scopus 로고
    • Can a vector space based learning model discover inductive class generalization in a symbolic environment?
    • L. Goldfarb, J. Abela, V. C. Bhavsar, and V. N. Kamat, "Can a vector space based learning model discover inductive class generalization in a symbolic environment?," Pattern Recognit. Lett., vol. 16, pp. 719-726, 1995.
    • (1995) Pattern Recognit. Lett. , vol.16 , pp. 719-726
    • Goldfarb, L.1    Abela, J.2    Bhavsar, V.C.3    Kamat, V.N.4
  • 155
    • 0032165969 scopus 로고    scopus 로고
    • A general framework for adaptive processing of data structures
    • Sept.
    • P. Frasconi, M. Gori, and A. Sperduti, "A general framework for adaptive processing of data structures," IEEE Trans. Neural Networks, vol. 9, pp. 768-786, Sept. 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 768-786
    • Frasconi, P.1    Gori, M.2    Sperduti, A.3
  • 156
    • 0005050390 scopus 로고    scopus 로고
    • RULENEG: Extracting rules from a trained ANN by stepwise negation
    • Neurocomputing Res. Centre, Queensland Univ. Technol., Brisbane, Qld., Aust.
    • R. Hayward, C. Ho-Stuart, J. Diederich, and E. Pop, "RULENEG: Extracting rules from a trained ANN by stepwise negation," Neurocomputing Res. Centre, Queensland Univ. Technol., Brisbane, Qld., Aust., QUT NRC Tech. Rep., 1996.
    • (1996) QUT NRC Tech. Rep.
    • Hayward, R.1    Ho-Stuart, C.2    Diederich, J.3    Pop, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.