-
1
-
-
0000710299
-
Queries and concept learning
-
Angluin, D. 1988. Queries and concept learning. Mach. Learn. 2, 319-342.
-
(1988)
Mach. Learn.
, vol.2
, pp. 319-342
-
-
Angluin, D.1
-
2
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
Barron, A. 1993. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39(3), 930-945.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.1
-
3
-
-
0001325515
-
Approximation and estimation bounds for artificial neural networks
-
Barron, A. 1994. Approximation and estimation bounds for artificial neural networks. Mach. Learn. 14, 115-133.
-
(1994)
Mach. Learn.
, vol.14
, pp. 115-133
-
-
Barron, A.1
-
4
-
-
0026190366
-
Minimum complexity density estimation
-
Barron, A., and Cover, T. 1991. Minimum complexity density estimation. IEEE Trans. Theory 37(4).
-
(1991)
IEEE Trans. Theory
, vol.37
, Issue.4
-
-
Barron, A.1
Cover, T.2
-
5
-
-
0001160588
-
What size net gives valid generalization?
-
Baum, E. B., and Haussler, D. 1989. What size net gives valid generalization? Neural Comp. 1, 151-160.
-
(1989)
Neural Comp.
, vol.1
, pp. 151-160
-
-
Baum, E.B.1
Haussler, D.2
-
6
-
-
85051131411
-
Training a three-neuron neural net is NP-complete
-
Morgan Kaufmann, San Mateo, CA
-
Blum, A., and Rivest, R. L. 1988. Training a three-neuron neural net is NP-complete. In Proceedings of the 1988 Workshop on Computational Learning Theory, pp. 9-18. Morgan Kaufmann, San Mateo, CA.
-
(1988)
Proceedings of the 1988 Workshop on Computational Learning Theory
, pp. 9-18
-
-
Blum, A.1
Rivest, R.L.2
-
7
-
-
0008995203
-
Generalization properties of Radial Basis Functions
-
R. Lippmann, J. Moody, and D. Touretzky, eds., Morgan Kaufmann, San Mateo, CA
-
Botros, S., and Atkeson, C. G. 1991. Generalization properties of Radial Basis Functions. In Advances in Neural Information Processing Systems 3, R. Lippmann, J. Moody, and D. Touretzky, eds., pp. 707-713. Morgan Kaufmann, San Mateo, CA.
-
(1991)
Advances in Neural Information Processing Systems 3
, pp. 707-713
-
-
Botros, S.1
Atkeson, C.G.2
-
8
-
-
0000966291
-
Can neural networks do better than the VC bounds?
-
R. Lippmann, J. Moody, and D. Touretzky, eds., Morgan Kaufmann, San Mateo, CA
-
Cohn, D., and Tesauro, G. 1991. Can neural networks do better than the VC bounds? In Advances in Neural Information Processing Systems 3, R. Lippmann, J. Moody, and D. Touretzky, eds., pp. 911-917. Morgan Kaufmann, San Mateo, CA.
-
(1991)
Advances in Neural Information Processing Systems 3
, pp. 911-917
-
-
Cohn, D.1
Tesauro, G.2
-
9
-
-
34250263445
-
Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation
-
Craven, P., and Wahba, G. 1979. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation. Numer. Math. 31, 377-403.
-
(1979)
Numer. Math.
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
10
-
-
0024861871
-
Approximation by superposition of a sigmoidal function
-
Cybenko, G. 1989. Approximation by superposition of a sigmoidal function. Math. Control Syst. Signals 2(4), 303-314.
-
(1989)
Math. Control Syst. Signals
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
11
-
-
0001244757
-
On the almost everywhere convergence of nonparametric regression function estimate
-
Devroye, L. 1981. On the almost everywhere convergence of nonparametric regression function estimate. Ann. Statist. 9, 1310-1319.
-
(1981)
Ann. Statist.
, vol.9
, pp. 1310-1319
-
-
Devroye, L.1
-
12
-
-
0001605679
-
Universal Donsker classes and metric entropy
-
Dudley, R. M. 1987. Universal Donsker classes and metric entropy. Ann. Prob. 14(4), 1306-1326.
-
(1987)
Ann. Prob.
, vol.14
, Issue.4
, pp. 1306-1326
-
-
Dudley, R.M.1
-
13
-
-
0003875839
-
-
Mathematics Series. Wadsworth and Brooks/Cole, Pacific Grove, CA
-
Dudley, R. M. 1989. Real Analysis and Probability, Mathematics Series. Wadsworth and Brooks/Cole, Pacific Grove, CA.
-
(1989)
Real Analysis and Probability
-
-
Dudley, R.M.1
-
15
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., and Doursat, R. 1992. Neural networks and the bias/variance dilemma. Neural Comp. 4, 1-58.
-
(1992)
Neural Comp.
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
16
-
-
0000065292
-
Regularization theory, Radial Basis Functions and networks
-
V. Cherkassky, J. H. Friedman, and H. Wechsler, eds. Subseries F, Computer and Systems Sciences, Springer-Verlag, Berlin
-
Girosi, F. 1994. Regularization theory, Radial Basis Functions and networks. In From Statistics to Neural Networks. Theory and Pattern Recognition Applications, V. Cherkassky, J. H. Friedman, and H. Wechsler, eds. Subseries F, Computer and Systems Sciences, Springer-Verlag, Berlin.
-
(1994)
From Statistics to Neural Networks. Theory and Pattern Recognition Applications
-
-
Girosi, F.1
-
17
-
-
0003085388
-
Rates of convergence for Radial Basis Functions and neural networks
-
R. J. Mammone, ed., Chapman & Hall, London
-
Girosi, F., and Anzellotti, G. 1993. Rates of convergence for Radial Basis Functions and neural networks. In Artificial Neural Networks for Speech and Vision, R. J. Mammone, ed., pp. 97-113. Chapman & Hall, London.
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 97-113
-
-
Girosi, F.1
Anzellotti, G.2
-
18
-
-
0001219859
-
Regularization theory and neural networks architectures
-
Girosi, F., Jones, M., and Poggio, T. 1995. Regularization theory and neural networks architectures. Neural Comp. 7, 219-269.
-
(1995)
Neural Comp.
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
19
-
-
0025671510
-
A probabilistic approach to the understanding and training of neural network classifiers
-
Albuquerque, NM
-
Gish, H. 1990. A probabilistic approach to the understanding and training of neural network classifiers. In Proceedings of the ICASSP-90, pp. 1361-1365, Albuquerque, NM.
-
(1990)
Proceedings of the ICASSP-90
, pp. 1361-1365
-
-
Gish, H.1
-
20
-
-
0001770345
-
Equivalence proofs for multilayer perceptron classifiers and the bayesian discriminant function
-
J. Elman, D. Touretzky, and G. Hinton, eds. Morgan Kaufmann, San Mateo, CA
-
Hampshire, J. B. II, and Pearlmutter, B. A. 1990. Equivalence proofs for multilayer perceptron classifiers and the bayesian discriminant function. In Proceedings of the 1990 Connectionist Models Summer School, J. Elman, D. Touretzky, and G. Hinton, eds. Morgan Kaufmann, San Mateo, CA.
-
(1990)
Proceedings of the 1990 Connectionist Models Summer School
-
-
Hampshire II, J.B.1
Pearlmutter, B.A.2
-
21
-
-
0002192516
-
Decision-theoretic generalizations of the PAC model for neural net and other learning applications
-
Haussler, D. 1992. Decision-theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation 100(1), 78-150.
-
(1992)
Information and Computation
, vol.100
, Issue.1
, pp. 78-150
-
-
Haussler, D.1
-
22
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
23
-
-
2342515823
-
The VC dimension versus the statistical capacity of multilayer networks
-
S. J. Hanson, J. Moody, and R. P. Lippman, eds., Morgan Kaufmann, San Mateo, CA
-
Ji, C., and Psaltis, D. 1992. The VC dimension versus the statistical capacity of multilayer networks. In Advances in Neural Information Processing Systems 4, S. J. Hanson, J. Moody, and R. P. Lippman, eds., Morgan Kaufmann, San Mateo, CA.
-
(1992)
Advances in Neural Information Processing Systems 4
-
-
Ji, C.1
Psaltis, D.2
-
24
-
-
0000796112
-
A simple lemma on greedy approximation in Hilbert space and convergence rates for Projection Pursuit Regression and neural network training
-
Jones, L. K. 1992. A simple lemma on greedy approximation in Hilbert space and convergence rates for Projection Pursuit Regression and neural network training. Ann. Statist. 20(1), 608-613.
-
(1992)
Ann. Statist.
, vol.20
, Issue.1
, pp. 608-613
-
-
Jones, L.K.1
-
25
-
-
0003727457
-
-
Ph.D. thesis, University of Massachusetts, Amherst, Amherst, MA
-
Judd, S. 1988. Neural network design and complexity of learning. Ph.D. thesis, University of Massachusetts, Amherst, Amherst, MA.
-
(1988)
Neural Network Design and Complexity of Learning
-
-
Judd, S.1
-
26
-
-
0022775261
-
The rates of convergence of kernel regression estimates and classification rules
-
Krzyzak, A. 1986. The rates of convergence of kernel regression estimates and classification rules. IEEE Trans. Inform. Theory IT-32(5), 668-679.
-
(1986)
IEEE Trans. Inform. Theory
, vol.IT-32
, Issue.5
, pp. 668-679
-
-
Krzyzak, A.1
-
27
-
-
0025508916
-
A statistical approach to learning and generalization in layered neural networks
-
Levin, E., Tishby, N., and Solla, S. A. 1990. A statistical approach to learning and generalization in layered neural networks. Proc. IEEE 78(10), 1568-1574.
-
(1990)
Proc. IEEE
, vol.78
, Issue.10
, pp. 1568-1574
-
-
Levin, E.1
Tishby, N.2
Solla, S.A.3
-
28
-
-
0023331258
-
An introduction to computing with neural nets
-
April
-
Lippmann, R. P. 1987. An introduction to computing with neural nets. IEEE ASSP Mag. April, 4-22.
-
(1987)
IEEE ASSP Mag.
, pp. 4-22
-
-
Lippmann, R.P.1
-
30
-
-
0006863682
-
Approximation properties of a multilayered feedforward artificial neural network
-
Mhaskar, H. N. 1993. Approximation properties of a multilayered feedforward artificial neural network. Adv. Comput. Math. 1, 61-80.
-
(1993)
Adv. Comput. Math.
, vol.1
, pp. 61-80
-
-
Mhaskar, H.N.1
-
31
-
-
0000358945
-
Approximation by superposition of a sigmoidal function
-
Mhaskar, H. N., and Micchelli, C. A. 1992. Approximation by superposition of a sigmoidal function. Adv. Appl. Math. 13, 350-373.
-
(1992)
Adv. Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
32
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in non-linear learning systems
-
S. J. Hanson, J. Moody, and R. P. Lippman, eds., Morgan Kaufmann, San Mateo, CA
-
Moody, J. 1991. The effective number of parameters: An analysis of generalization and regularization in non-linear learning systems. In Advances in Neural Information Processing Systems 4, S. J. Hanson, J. Moody, and R. P. Lippman, eds., pp. 847-854. Morgan Kaufmann, San Mateo, CA.
-
(1991)
Advances in Neural Information Processing Systems 4
, pp. 847-854
-
-
Moody, J.1
-
33
-
-
0000672424
-
Fast learning in networks of locally-tuned processing units
-
Moody, J., and Darken, C. 1989. Fast learning in networks of locally-tuned processing units. Neural Comp. 1(2), 281-294.
-
(1989)
Neural Comp.
, vol.1
, Issue.2
, pp. 281-294
-
-
Moody, J.1
Darken, C.2
-
35
-
-
0011374843
-
-
A.I. Memo 1467, Massachussetts Institute of Technology, 1994
-
Niyogi, P., and Girosi, F. 1994. On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. A.I. Memo 1467, Massachussetts Institute of Technology, 1994. URL ftp://publications.ai.mit.edu/ai-publications/1000-1499/AIM-1467.ps.Z.
-
(1994)
On the Relationship between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions
-
-
Niyogi, P.1
Girosi, F.2
-
36
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T., and Girosi, F. 1990. Networks for approximation and learning. Proc. IEEE 78(9).
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
-
-
Poggio, T.1
Girosi, F.2
-
38
-
-
0001739142
-
The theory of radial basis functions approximation in 1990
-
W. A. Light, ed., Oxford University Press, Oxford, England
-
Powell, M. J. D. 1992. The theory of radial basis functions approximation in 1990. In Advances in Numerical Analysis Volume II: Wavelets, Subdivision Algorithms and Radial Basis Functions, W. A. Light, ed., pp. 105-210. Oxford University Press, Oxford, England.
-
(1992)
Advances in Numerical Analysis Volume II: Wavelets, Subdivision Algorithms and Radial Basis Functions
, pp. 105-210
-
-
Powell, M.J.D.1
-
39
-
-
0001595997
-
Neural network classifier estimates bayesian a-posteriori probabilities
-
Richard, M. D., and Lippman, R. P. 1991. Neural network classifier estimates bayesian a-posteriori probabilities. Neural Comp. 3, 461-483.
-
(1991)
Neural Comp.
, vol.3
, pp. 461-483
-
-
Richard, M.D.1
Lippman, R.P.2
-
42
-
-
0001300994
-
Solution of incorrectly formulated problems and the regularization method
-
Tikhonov, A. N. 1963. Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4, 1035-1038.
-
(1963)
Soviet Math. Dokl.
, vol.4
, pp. 1035-1038
-
-
Tikhonov, A.N.1
-
44
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik, V. N., and Chervonenkis, A. Y. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Th. Prob. Appl. 17(2), 264-280.
-
(1971)
Th. Prob. Appl.
, vol.17
, Issue.2
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
45
-
-
0000864140
-
The necessary and sufficient conditions for consistency in the empirical risk minimization method
-
Vapnik, V. N., and Chervonenkis, A. Y. 1991. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Patt. Recogn. Image Analysis 1(3), 283-305.
-
(1991)
Patt. Recogn. Image Analysis
, vol.1
, Issue.3
, pp. 283-305
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
46
-
-
0003466536
-
-
Series in Applied Mathematics, SIAM, Philadelphia
-
Wahba, G. 1990. Spline Models for Observational Data, Series in Applied Mathematics, Vol. 59. SIAM, Philadelphia.
-
(1990)
Spline Models for Observational Data
, vol.59
-
-
Wahba, G.1
-
47
-
-
0000539096
-
Generalization by weight elimination with applications to forecasting
-
R. Lippmann, J. Moody, and D. Touretzky, eds., Morgan Kaufmann, San Mateo, CA
-
Weigand, A. S., Rumelhart, D. E., and Huberman, B. A. 1991. Generalization by weight elimination with applications to forecasting. In Advances in Neural Information Processing Systems 3, R. Lippmann, J. Moody, and D. Touretzky, eds., Morgan Kaufmann, San Mateo, CA.
-
(1991)
Advances in Neural Information Processing Systems 3
-
-
Weigand, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
48
-
-
0025635525
-
Connectionist nonparametric regression: Multilayer perceptrons can learn arbitrary mappings
-
White, H. 1990. Connectionist nonparametric regression: Multilayer perceptrons can learn arbitrary mappings. Neural Networks 3, 535-549.
-
(1990)
Neural Networks
, vol.3
, pp. 535-549
-
-
White, H.1
|