메뉴 건너뛰기




Volumn 25, Issue 1-3, 2006, Pages 323-344

Approximation with polynomial kernels and SVM classifiers

Author keywords

Approximation by Durrmeyer operators; Classification algorithm; Misclassification error; Polynomial kernel; Regularization scheme; Support vector machine

Indexed keywords


EID: 33745650526     PISSN: 10197168     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10444-004-7206-2     Document Type: Article
Times cited : (122)

References (34)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 5
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • D. Chen, Q. Wu, Y. Ying and D.X. Zhou, Support vector machine soft margin classifiers: Error analysis, J. Mach. Learning Res. 5 (2004) 1143-1175.
    • (2004) J. Mach. Learning Res. , vol.5 , pp. 1143-1175
    • Chen, D.1    Wu, Q.2    Ying, Y.3    Zhou, D.X.4
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learning 20 (1995) 273-297.
    • (1995) Mach. Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2001) 1-49.
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 9
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the biasvariance problem
    • F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: On the biasvariance problem, Found. Comput. Math. 1 (2002) 413-428.
    • (2002) Found. Comput. Math. , vol.1 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 12
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000) 1-50.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 13
    • 0037312471 scopus 로고    scopus 로고
    • A note on the universal approximation capability of support vector machines
    • B. Hammer and K. Gersmann, A note on the universal approximation capability of support vector machines, Neural Processing Lett. 17 (2003) 43-53.
    • (2003) Neural Processing Lett. , vol.17 , pp. 43-53
    • Hammer, B.1    Gersmann, K.2
  • 14
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Y. Lin, Support vector machines and the Bayes rule in classification, Data Mining Knowledge Discovery 6 (2002) 259-275.
    • (2002) Data Mining Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 15
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions, Neural Comput. 8 (1996) 819-842.
    • (1996) Neural Comput. , vol.8 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 19
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale and D.X. Zhou, Estimating the approximation error in learning theory, Anal. Appl. 1 (2003) 17-41.
    • (2003) Anal. Appl. , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.X.2
  • 20
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • S. Smale and D.X. Zhou, Shannon sampling and function reconstruction from point values, Bull. Amer. Math. Soc. 41 (2004) 279-305.
    • (2004) Bull. Amer. Math. Soc. , vol.41 , pp. 279-305
    • Smale, S.1    Zhou, D.X.2
  • 21
    • 84876632679 scopus 로고    scopus 로고
    • Shannon sampling II. Connections to learning theory
    • (July) submitted by invitation
    • S. Smale and D.X. Zhou, Shannon sampling II. Connections to learning theory, Appl. Comput. Harmonic Anal. (July 2004) submitted by invitation.
    • (2004) Appl. Comput. Harmonic Anal.
    • Smale, S.1    Zhou, D.X.2
  • 22
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • I. Steinwart, Support vector machines are universally consistent, J. Complexity 18 (2002) 768-791.
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 23
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart, On the influence of the kernel on the consistency of support vector machines, J. Mach. Learning Res. 2 (2001) 67-73.
    • (2001) J. Mach. Learning Res. , vol.2 , pp. 67-73
    • Steinwart, I.1
  • 24
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A.B. Tsybakov, Optimal aggregation of classifiers in statistical learning, Ann. Statist. 32 (2004) 135-166.
    • (2004) Ann. Statist. , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 27
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hubert spaces and the Randomized GACV
    • eds. Schölkopf, Burges and Smola (MIT Press, Cambridge, MA)
    • G. Wahba, Support vector machines, reproducing kernel Hubert spaces and the Randomized GACV, in: Advances in Kernel Methods - Support Vector Learning, eds. Schölkopf, Burges and Smola (MIT Press, Cambridge, MA, 1999) pp. 69-88.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 28
    • 85050895500 scopus 로고    scopus 로고
    • Multikernel regularized classifiers
    • to appear
    • Q. Wu, Y. Ying and D.X. Zhou, Multikernel regularized classifiers, J. Complexity, to appear.
    • J. Complexity
    • Wu, Q.1    Ying, Y.2    Zhou, D.X.3
  • 30
    • 33745676751 scopus 로고    scopus 로고
    • Support vector machine classifiers: Linear programming versus quadratic programming
    • in press
    • Q. Wu and D.X. Zhou, Support vector machine classifiers: Linear programming versus quadratic programming, Neural Computation, in press.
    • Neural Computation
    • Wu, Q.1    Zhou, D.X.2
  • 31
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang, Statistical behavior and consistency of classification methods based on convex risk minimization, Ann. Statist. 32 (2004) 56-85.
    • (2004) Ann. Statist. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 32
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D.X. Zhou, The covering number in learning theory, J. Complexity 18 (2002) 739-767.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 33
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory 49 (2003) 1743-1752.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.