메뉴 건너뛰기




Volumn 5, Issue 1, 2005, Pages 59-85

Model selection for regularized least-squares algorithm in learning theory

Author keywords

Model selection; Optimal choice of parameters; Regularized least squares algorithm

Indexed keywords

CONTINUOUS PARAMETERS; GENERALIZATION ERROR; LEAST-SQUARES ALGORITHMS; MODEL SELECTION; MODEL SELECTION PROCEDURES; OPTIMAL CHOICE; REGRESSION FUNCTION; SMOOTHNESS CONDITIONS;

EID: 24944432318     PISSN: 16153375     EISSN: 16153383     Source Type: Journal    
DOI: 10.1007/s10208-004-0134-1     Document Type: Article
Times cited : (154)

References (24)
  • 1
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler, Scale-sensitive dimensions, uniform convergence, and learnability, J. ACM 44 (1997), 615-631.
    • (1997) J. ACM , vol.44 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 6
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker and S. Smale, Best choices for regularization parameters in learning theory: On the bias-variance problem, Found. Comput. Math. 2 (2002), 413-428.
    • (2002) Found. Comput. Math. , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 7
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 1-49.
    • (2002) Bull. Amer. Math. Soc. (N.S.) , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 10
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), 1-50.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 11
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (1995), 219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 13
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • 1989 (Norwich, 1989), Cambridge University Press, Cambridge
    • C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, 1989 (Norwich, 1989), Cambridge University Press, Cambridge, 1989, pp. 148-188.
    • (1989) Surveys in Combinatorics , pp. 148-188
    • McDiarmid, C.1
  • 14
    • 35248851077 scopus 로고    scopus 로고
    • A few notes on statistical learning theory
    • (S. Mendelson and A. Smola, eds.), Springer-Verlag
    • S. Mendelson, A few notes on statistical learning theory, in Advanced Lectures in Machine Learning (S. Mendelson and A. Smola, eds.), Springer-Verlag, 2003, pp. 1-40.
    • (2003) Advanced Lectures in Machine Learning , pp. 1-40
    • Mendelson, S.1
  • 15
    • 0033480745 scopus 로고    scopus 로고
    • Generalization bounds for function approximation from scattered noisy data
    • P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1999), 51-80.
    • (1999) Adv. Comput. Math. , vol.10 , pp. 51-80
    • Niyogi, P.1    Girosi, F.2
  • 16
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, Networks for approximation and learning, in Proceedings of the IEEE, Vol. 78, 1990, pp. 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 17
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, General conditions for predictivity in learning theory, Nature 428 (2004), 419-422.
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 19
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale and D.-X. Zhou, Estimating the approximation error in learning theory, Anal. Appl. (Singap.) 1 (2003), 17-41.
    • (2003) Anal. Appl. (Singap.) , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.-X.2
  • 20
    • 84898974114 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel machines
    • University of Jena, Department of Mathematics and Computer Science
    • I. Steinwart, Consistency of support vector machines and other regularized kernel machines, Technical Report 02-03, University of Jena, Department of Mathematics and Computer Science, 2002.
    • (2002) Technical Report , vol.2 , Issue.3
    • Steinwart, I.1
  • 23
    • 0042879446 scopus 로고    scopus 로고
    • Leave-one-out bounds for kernel methods
    • T. Zhang, Leave-one-out bounds for kernel methods, Neural Comput. 15 (2003), 1397-1437.
    • (2003) Neural Comput. , vol.15 , pp. 1397-1437
    • Zhang, T.1
  • 24
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D.-X. Zhou, The covering number in learning theory, J. Complexity 18 (2002), 739-767.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.-X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.